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UNIFORM CLOSURES OF FOURIER-STIELTJES ALGEBRAS

CHING CHOU1

Abstract. Let H be a closed normal subgroup of a locally compact group

G. Assume that / is a continuous function on G such that it is constant on

the cosets of H in G and it can be approximated uniformly by coefficient

functions of unitary representations of G. We show that / can be approxi-

mated uniformly by coefficient functions of representations of G which are

lifted from unitary representations of G/H. For abelian G, our theorem is a

conjecture of R. B. Burckel.

Let G be a locally compact group and B(G) its Fourier-Stieltjes algebra.

Then B(G) is a commutative Banach algebra with its usual norm || • || (cf.

Eymard [4, p. 197]). Let C(G) be the algebra of bounded complex-valued

continuous functions on G with sup norm || • H^. The uniform closure of a set

E in C(G) will be denoted by E~.

For a closed normal subgroup H of G, denote the canonical homomor-

phism of G onto G/H by tt. Let w: C(G/H)->C(G) be defined by

ïtf — f ° 77,/ G C(G/H). The purpose of this paper is to prove the following.

Theorem. Let G be a locally compact group and H a closed normal subgroup

ofG. Then

tt(B(G/H)) - -r}(C(G/H)) n B(G)~.

Recall that B(G) is the algebra of coefficient functions of continuous

unitary representations of G or, equivalently, the algebra of linear combina-

tions of positive definite continuous functions on G (see [4]). Therefore what

we stated in the Abstract is equivalent to the above theorem. If G is abelian

with dual group T and if M(T) is the Banach algebra of bounded regular

Borel measures on T then B(G) = {fr: ¡i E M(T)) where fr(x) =

¡T(y, x) dfi(y), x E G and || /x|| = || /i||. In this case the above theorem can be

stated as follows: Suppose / is a continuous function on G such that it is

constant on the cosets H + x and it can be approximated uniformly by

Fourier-Stieltjes transforms of measures on T then it can be approximated

uniformly by Fourier-Stieltjes transforms of measures on the annihilator of H

in T. This is a conjecture given by Burckel in his monograph [1, p. 81,

Problem 7]. He was able to prove it if H is further assumed to be compact.
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Proof of the Theorem. Eymard proved in [4, p. 202] that

ir(B(G/H)) = ir(C(G/H))n B(G). (1)

Since it is onto, if is an isometry with respect to the sup norm. Therefore, by

(1), H(B(G/H)-) E if(C(G/H)) n B(G)-.
To see the converse, let/ G if(C(G///)) n B(G)~. Then, for a given e > 0,

there exists « G B(G) such that

\f(x) - h(x)\ <e,       x EG. (2)

By Ryll-Nardzewski's fixed point theorem, W(H), the algebra of continu-

ous weakly almost periodic functions on H with sup norm, has a unique

translation invariant mean m: m G W(H)*, \\m\\ = 1, m > 0 and m(k-1) =

m(k) if k G W(H) and t G H where k ■ t G W(//) is defined by (k • f)(0 =

¿(fr), t' EH (cf. [1, p. 15]). For x E G, let «x G C(H) be defined by

MO = h(tx), t E H. It is easy to check that hx G B(H). Since B(/Z) c

W(H) (cf. [1, p. 36]) hx(x) = m(«J is defined for each x E G. We claim that

hxEm(B(G/H)). (3)

By (1), it suffices to show that (i) «, G ñ(C(G/H)) and (ii) «! G B(G).

(i) Since functions in B(G) are uniformly continuous, if xa —» x in G then

|A,(*J - A,(*)|«|m(A. - M<IK - M.-0-

So «, is continuous on G. Since m is //-invariant, A,(íjc) = m(hx ■ t) = m(hx)

= hx(x), fort G H and x G G. Therefore, A, G ñ(C(G/H)).

(ii) We will apply the following result of Davis [3, Theorem 5.1]: There

exists a net of open and relatively compact subsets Ua of H such that

m(k) = lim -i- T   *(/) dX(t),       k G IFY//). (4)
a   *(Ua)Jua

Here A is a fixed left Haar measure of H. (For locally compact amenable

groups, this fact is well known; see [5, p. 43].) For each a, set <pa = (l/X(Ua))

• Xu where Xu is me characteristic function of Ua in H. Let dpa =

(l/A)<p~ dX where A is the modular function on H and <p~(t) = <Pa(f-1),

/ G H. Then || ju,a|| = /(1/A)<p~ dX = 1. We will consider ua as a measure on

G. Set

Then 4, = ita * «. By [4, p. 198], £, G B(G) and \\U < || uj| ||«|| = ||A||. By
(4), hx(x) = m(hx) = lima ^(x), x G G. Therefore, A, is a pointwise hmit of a

net of functions ^ in 5(G) with ||£J| < ||«||. Since hx is continuous, by [4, p.

202], «, G B(G). The proof of (ii) is completed.

Note that for each / G H, fx(t) = f(xt) = fix). Therefore, m(fx) = fix).

Now, by (2), ||/x - hx\\x < e and hence \m(fx) - m(hx)\ < e, x G G. So, we
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have

\f(x) - hx(x)\ < e,       x E G. (5)

By assumption there exists g E C(G/H) such that irg = / and by (3) there

exists h2 G B(G/H) such that ^(Aj) = A,. So (5) can be written as

\g(Hx) - h2(Hx)\ <e,       HxE G/H.

Since e > 0 is arbitrary, we conclude that g E B(G/H)~ and hence/ = ñ(g)

E tt(B(G/H)-).

Remark. If, in the above theorem, H is compact, then the fact that

A, G B(G), the crux of our proof, becomes obvious. For, in this case,

A, = X * A where A is the normalized Haar measure of H. If G is abelian, H is

compact, i.e., the case considered by Burckel [1, Theorem A.39], and A = ß E

B(G) then A, = fix where ju, is defined by ¡ix(B) = n(B n A), B a Borel set in

T and A the annihila tor of H in T:

hx(x) = f h(x + t) dX(t)
JH

= /r(Y^)(///(y,0^(0)^(Y)

= f (y, x) dfi(y) = ßx(x),       x E G.

Note that Burckel proved his Theorem A.39 by applying Ramirez' char-

acterization theorem for B(G)~ (cf. [1, Theorem A.38]). He then applied his

Theorem A.39 to give a proof of the following theorem of Ramirez [6]: If G is

a noncompact locally compact abelian group then B(G)' § W(G) (cf. [1, p.

67]).

Let G and H be as in our theorem. It is known that tt(W(G/H)) =

tt(C(G/H)) n W(G) (see [1]). Therefore we have the following.

Corollary 1. If B(G)~= W(G) then B(G/H)~= W(G/H).

By combining this corollary with Ramirez' theorem in [6] we can state the

following.

Corollary 2. Suppose G is a locally compact group with a noncompact

locally compact abelian quotient group. Then W(G) ^ B(G)~.

For example, W(G) ^ B(G)~ if G is the Heisenberg group or the ax + b

group. Note that there exist noncompact groups G with W(G) = B(G)~, see

[2]-
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