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SELF-INJECTIVE RINGS1

CARL FAITH

Abstract. In 1958 Matlis proved that the study of Noetherian complete

local rings could be subsumed under the study of injective modules E over a

commutative ring A such that B — End^ E is commutative. In this case

B — Endfl E, and E is said to be strongly balanced over B. The main

theorem of this paper shows that the study of strongly balanced injectives

over any ring, and hence the study of Morita self-dualities, is contained in

the study of self-injective rings.

Introduction. Let mod-A (A -mod) denote the category of all right (left)

A -modules over a ring A. For a noncommutative ring B and a two-sided

5-bimodule E, in a natural way the Cartesian product R is a ring, the

so-called split-null or trivial extension of E by B; also called the semidirect

product (ring) of the bimodule E and denoted by R = (B, E).

Theorem. R = (B, E) is an injective (injective cogenerator) in mod-/? iff E

is an injective (injective cogenerator) in mod-2? such that B = End EB canoni-

cally.

This theorem shows that any ring B with an injective bimodule E such that

B = End EB is isomorphic to a factor ring R/(0, E) of a self-injective ring,

and also leads to new examples of self-injective rings, notably those which are

not injective cogenerator ( = PF) rings, or not valuation rings.

When R, or E, is a two-sided injective cogenerator, the theorem is a

corollary of a theorem of Müller [23].

Propositions. We begin with the main lemma used in the proof of

Theorem 2.

1. Lemma. Let R be a ring, let E be an ideal which is its own left annihilator,

±E = {a E R\aE = 0} = E, let B = R/E. Then E is canonically a B-bimod-

ule. If
(1.1) E is injective as a (canonical) right B-module, and

(1.2) Jl » End EB canonically,

then R is right self-injective (= injective in mod-R).

Conversely, if R is right self-injective, then for any ideal A, the left annihilator

Presented to the Society, August 18, 1977 under the title The injective local ring of a complete

local ring; received by the editors July 12, 1977 and, in revised form, July 20, 1978.

AMS (MOS) subject classifications (1970). Primary 13D99, 13H99, 16A52, 16A64; Secondary
13A15, 13B99, 16A34, 16A42.

' Part of this paper was written while the author was a visitor at the Institute for Advanced

Study.

© 1979 American Mathematical Society

0002-9939/79/0000-0500/S03.00

157



158 CARL FAITH

x^4 is an infective right R/A-module, and Endx AR ,A ta R/±À-^A canoni-

cally. Thus, in this case, any ideal E satifying E =±E satisfies (1.1) and (1.2).

Proof. Let F be the injective hull of R in mod-Ä, and let

Fx = ami,. E = {x E F\xa = 0, Va G E }.

Then, Fx is a right Ä-module, and E = XE is an injective right 5-module by

(1.1). Since every fi-submodule of Fx is an Ä-submodule, then Fx is an

essential extension of Fx n R = E as an Ä-module, hence as a 5-module, so

injectivity of £ in mod-B implies that Fx = ann^ E = E. Thus, if y G F, then

yE C an% E = E, so y induces an endomorphism b E B' = End ER =

End EB. Now every r E R induces an endomorphism rs E End EB via left

multiplication; hence B = R/±E = R/E embeds in B' canonically. Since

B « B' canonically by the assumption (1.2), there exists r E R such that

yx = b(x) = rsx = rx,   Vx G E,

so

(y - r)x = 0,   Vx G E;

hence

y — r = c E annF E = E E R.

Therefore, y = r + c G R, Vy G F, proving that F = R is injective. In this

case, for any ideal A, XA is an injective right R/A-module (e.g., [3b, p. 66,

Proposition 12]) and every b E End AR is induced by an element r E R;

hence R/XA «s End>4Ä. Also, R/X±A œEnd±AR = End1^/^, canoni-

cally. Taking A = E = ±E, we have the stated properties (1) and (2).

2. Theorem. Let R = (B, E) be the semidirect product of a bimodule E over

a ring B. Thus, a(xb) = (ax)b for all a, b E B and x G E, and in R = B X E

addition is componentwise, and multiplication is defined by ;

(2.1) (a, x)(b,y) = (ab, ay + xb).

(The ring R is « the ring of all 2x2 matrices (g *), with a E B, x E E, under

ordinary matrix operations) Then;

(2.2) R is right self-injective iff E is injective in mod-5, and B = End EB

canonically.

(2.3) R is a right injective cogenerator in mod-R ( = R is right PF) iff E is

an injective cogenerator of mod-B satisfying B = End EB canonically.

(2.4) Assuming (2.3), then R is left PF iff E is an injective cogenerator of

B-mod, and B = EndB E canonically.

Proof. (2.2). Identify E with Ex = {(0, x)|x G E) in R, and B with

Bx = {(b, 0)\b E B). Clearly, BfvBxœR/Ex (under b h> (b, 0) <-> (b, 0) +

Ex), and ±EX in R is Ex if E is a faithful left fi-module. Thus, assuming EB

injective and B = End EB, that is, assuming (1.1) and (1.2), we have R is

injective by Lemma 1. The converse also comes from Lemma 1.
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(2.3). Assume that R is right PF (= pseudo-Frobenius). By [3a, p. 148,

3.31], an injective right B-module E is cogenerating iff every simple right

B-module embeds in E. Since R is a right injective cogenerator ring by

assumption, every simple right B-module V^R. Now, since J = rad R

contains any square-zero (or nilpotent or nil) ideal, then J D Ex; hence

R/J « B/rad B, and every simple right B.-module V = R/M corresponds to

a simple right B-module V = B/M'. Since V embeds in R, then V embeds

in R. If v E R and v = (b, x) ^ 0 generates V, then b = 0 => V Ç E, and

b ¥= 0 => 3(0, y) ¥• 0 £ E such that (6, x)(0,y) = (0, by) ¥= 0 E V n £;

hence Fn£= K Ç ¿s in both cases. This proves that every simple B-mod-

ule V embeds in E. Since E is injective by (2.2), this proves that E is

cogenerating in mod-B. Moreover, B = End EB via (2.2).

These remarks also suffice for the converse of (2.3), since E cogenerating

means every simple B-module V embeds in E; hence every simple B-module

V embeds in E. Thus, if E is an injective cogenerator in mod-B, and

B = End EB, then R is injective by (2.2), hence cogenerating inasmuch as

every simple right B-module V embeds in Ex = (0, E) Ç R.

Proof of (2.4). Let R he left PF. Since E is an injective cogenerator of

mod-2? (by assumption (2.3)), then E is faithful as a right B-module (see, e.g.,

[3a, p. 92, 114(a)]); hence Ex± = Ex follows, so £, is an injective left A-mod-

ule, where B = R/Ex, and it is easy to see that E « Ex is actually an

injective cogenerator of B-mod: If F is a simple left B-module, then F is a

simple left B-module, so V C R. But Ex V = 0, since F is a 5-module, so

V C Exx = Ex making Ex a cogenerator of .B-mod (cf. [3b, p. 199, Exercise

1]). Conversely, if E is an injective cogenerator of .B-mod, and B = EndB E,

then by the right-left symmetry of Lemma 1 R is left self-injective, hence

cogenerating inasmuch as every simple left B-module V embeds in Ex =

(0, E) Q R.

2A. Corollary. Let R = (B, E) be the semidirect product of a ring B and

B-bimodule E. Then : R is cogenerating (both sides) iff E is a strongly balanced

injective cogenerator over B (both sides). In this case R is PF (both sides).

Proof. A ring R is cogenerating on both sides iff R is PF on both sides (see

[10]). Therefore, Theorem 2 applies.

Since there exist rings which are right cogenerating but not injective (see

e.g. [17]), then (2.3) shows that E a strongly balanced cogenerator over mod-B

does not imply that R = (B, E) is cogenerating. However, a theorem of Faith

and Walker (e.g. [3b, p. 206, Proposition 24.9]) implies that any semilocal

right cogenerating ring is injective. Moreover, if E is strongly balanced and

cogenerating on both sides, then every one-sided ideal of R is an annihilator

[22]. Note: by starting with, e.g., a self-injective ring B = E, one obtains

another self-injective ring R = (B, E) having B as a factor ring, etc.
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Every known example of a right PF ring is left PF. (See [4a], [4b] for the

background of this problem.)

2B. Corollary. If every right PF ring is left PF, then a bimodule E over a

ring B satisfies (2.3) iff it satisfies the left-right symmetry (2.3)'.

Proof. This follows from (2.4).

Thus, the question is whether right PF => left PF can be reduced to a

module-theoretic question. Conceivably a negative answer could be found for

the latter for the case when E is some strongly balanced injective cogenerator

in mod- B for an integral domain B. Thus, does (2.3) imply the following three

conditions?

(2.3)'

(2.3a)'     E is injective in fi-mod,

(2.3b)'     £ is a cogenerator in S-mod,

(2.3c)'     B = Ends E canonically.

A theorem of Kato [10] implies that a right PF ring is left PF iff it is left

self-injective, and therefore it suffices to prove or disprove (2.3a)' and (2.3c)'.

Moreover, a theorem of E. A. Walker and the author (see, e.g., [3b, p. 206,

Proposition 24.9]) implies that any finitely generated projective cogenerator

over a semilocal ring is injective. Thus, since a right PF ring is semiperfect

hence semilocal, then (2.3b)' implies (2.3a)'; that is, it also suffices to prove or

disprove (2.3b)' and (2.3c)'.

A mapping /: L -» E of a left ideal L of B into a B-module £ is a Baer

homomorphism if there exists m E E such that/(x) = mx, Vx G L. Then E is

(FP)-injective in B-mod if every mapping/: L -» E from any (finitely gener-

ated) left ideal L is a Baer homomorphism. Any right PF ring is left

FP-injective (a result which follows from the theorem of Jain [25] to the effect

that R is left FP-injective iff every finitely presented right Ä-module is

torsionless). Moreover, R = (B, E) is left FP-injective only if E is FP-injec-

tive in 5-mod, so we conclude that (2.3) implies the latter. Thus, (2.3) does

imply some form of injectivity of E in fi-mod. Actually, left FP-injectivity of

(B, E) also implies: (1) that E is finitely quasi-injective in 5-mod in the sense

of [26], (2) that the right ideals of B satisfy the double annihilator condition,

with respect to E, and similarly, (3) that the right fi-submodules A' of £ of the

form X = Y + EK for a finitely generated right ideal K of B, and finitely

generated 5-submodule of E in mod-B, also satisfy the double annihilator

condition with respect to B. (It would be of obvious interest to characterize

FP-injectivity of (B, E).)

3. Corollary. // E is a B-bimodule satisfying (2.3), then B is semiperfect,

and E is a finite direct sum of indecomposable injectives. Therefore, there are

only finitely many nonisomorphic simple B-modules, and E has finite socle.
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Proof. Since B = (B, E) is right PF, then R is semiperfect, e.g., by

Osofsky's theorem [17] (cf. [3b, p. 213, Theorem 24.32]), and the rest follows

from this.

4. Theorem. Let B be a commutative Noetherian ring with a strongly

balanced injective module E. Then B = II" _ x B, is a finite product of complete

local rings, and E = 2"_ ] © E¡, where E¡ is the smallest injective cogenerator of

B¡, i = 1, . . ., n. Thus, E is the smallest injective cogenerator of B.

Proof. Since B is Noetherian, £ is a finite coproduct E = 1I"_, E¡ of

indecomposable injectives. Since each E¡ has local endomorphism ring, the

finite Krull-Schmidt theorem holds, and so B is a semilocal ring, idempotents

lift modulo radical (see [3b, p. 45, 18.26]), B = LT"_, B„ where B, = e^ «

Ends E¡ is a local ring, and ef = e¡ E B is the projection idempotent, i =

I, . . . , n. Hence, we may assume E is indecomposable and B local. By

Maths' theorem [13], in order that B be complete it is necessary and sufficient

to show that E is the injective hull of V = B/rad B. By the Matlis-Utumi

theorem, J = rad B is the set of all b such that bx = 0 for some x =£ 0. Since

J is f.g., and E is uniform, then W = ann£ J j= 0. Thus, W is an B/7-mod-

ule, hence is semisimple (= a direct sum of simples), whence simple by

uniformity, so W« R/J =-> E. Then, E is the injective hull of V = R/J, as

required.

4A. Corollary. If B = EndB E is a commutative local ring with f.g. radical

J, and E injective, then E = E(B/J) is the injective hull of B/J. So E is a

cogenerator in mod-B.2

Proof. Same.

4B. Corollary. // the semidirect product ring R = (B, E) of a Noetherian

commutative ring B and module E is self-injective, then R is an injective

cogenerator, and a finite product of local injective cogenerators.

Proof. By Theorem 2, B = EndB E canonically, and E is an injective

B-module, so Theorem 3B applies, and the rest is easy.

An application of Theorem 2 and Maths' theorem [13] yields:

4C. Theorem. If B is a Noetherian local ring, and E = E(B/rad B) the

injective hull, then R = (B, E) is injective iff B is complete. (Then R is PF.)

A ring R is a right valuation ring (VR) iff the right ideals of R are linearly

ordered by inclusion. (A chain ring is a variant term for VR.)

2 If 5 is a commutative ring with duality, then there exists a (self) duality context SFS where F

is the minimal injective cogenerator (Theorem of B. J. Müller [23]; see also Vamos [20, Corollary

1.7]). When the radical of S is finitely generated, then Corollary 4A shows that there is just one

self-duality. The dualities for commutative S are in 1-1 correspondence with ring automorphisms

of S of order < 2 (Morita [15]; cf. [3b, p. 199, 23.35D- For other dualities, consult [1], [3b], [7],

[13]-[16], [20], [21], [23], [24].
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5A. Proposition. A semidirect product ring R = (B, E) is a right VR iff B

is a right VR, E is uniserial, and bE = £, VO ¥= b G B.

Proof. If R is a right VR, then B « R/(0, E) is a right VR, and E »

(0, E) is uniserial. If b ¥= 0 G B, then (b, 0)R cj: (0, £); hence

(b, 0)R - (65, 0) + (0, bE ) D (0, E ),

so bE = E. The converse follows by reading up.

A VD is a domain which is a VR. For simplicity, from here on we shall

assume that B whence R is commutative.

5B. Corollary. Let E be a faithful B-module. Then R = (B, E) is a VR iff
B is a VD and E is a uniserial divisible B-module.

Proof. Immediate.

5C. Corollary. Let E be a torsion free module over a domain B. Then

R = (B, E) is a VR iff B is a VD and E is a uniserial injective B-module. In

this case R is injective iff E is strongly balanced.

Proof. Any torsion free divisible module over a domain is injective, so

apply the corollary. (Conversely, any injective module is divisible.) The last

sentence follows from Theorem 2.

6A. Theorem. Let R = (B, E) be a semidirect product ring. The f. a. e.;

(1) R is a PFVR (= aVR which is PF).

(2) B is an almost maximal valuation domain (AMVD), E = E(B/rad B) is

the injective hull of B/xad B, and B = EndÄ E.

(3) B is a local domain such that E = E(B/rad B) is uniserial and strongly

balanced.

(4) B is an MVD and E = E(B/rad B) is strongly balanced.

Proof. By Gill's theorem [5], a local ring B is AMVR iff E(B/J) is

uniserial, where J = rad B. Thus, using Theorems 2 and 5A, (2) <=> (3)

follows. Moreover, (1)<=>(3) by 5C and Corollary 4A, and (2)«=>(4) by a

theorem of Vamos [19].

6B. Corollary. If B is a Noetherian local domain, and E - E(B/J), then

the semidirect product ring R = (B, E) is an injective VR iff B is a complete

discrete valuation domain. In this case R is PF.

Proof. Follows from 6A and Maths' theorem [13] (since B is a Noetherian

VD).

7. Example. A noncongenerating injective local ring. (Levy [11].) Let £ be a

field, x an indeterminate, and W the family of all well-ordered sets of

nonnegative real numbers. Let A denote the ring of all formal power series

2aeM, caxa, where ca E F and w E W with the usual addition and multiplica-

tion. The proper ideals of A are: the principal ideals
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(x*)- {x*m|mG.4}

and the ideals

(x>6) = {xcu\u EA*U (0), Ob)

where A* = units of A. (In particular, rad A = (x>0).) Levy [11] proved that

every proper factor ring is self-injective. Now R = A /(x) does not contain a

minimal ideal, hence R is injective but not PF. [This corrects a statement of p.

216 of [3b] to the effect that every proper factor ring of A is PF! If every

factor ring of a ring R is PF ( = R is CPF), then R must be Artinian. (See for

example [3b, p. 238, Proposition 25.4.6A].) However, no factor ring R = A/I,

where / ¥" rad A, can be Artinian, since (rad A)2 = (rad A) => (rad R)2 —

(rad R).]

Any infinite product of self-injective rings is self-injective, but never PF

since never semiperfect, yielding additional examples of noncogenerating

injective rings.
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characterizes i.a. when R is QF-3.
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