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AMALGAMATION AND ELIMINATION OF QUANTIFIERS

FOR THEORIES OF FIELDS1

WILLIAM H. WHEELER

Abstract. The universal theories of integral domains and of ordered

integral domains which have the amalgamation property are characterized

via their existentially complete models. The results of A. Macintyre, K.

McKenna, and L. van den Dries on fields and ordered fields whose

complete theories permit elimination of quantifiers are then derived as easy

corollaries.

A. Macintyre, K. McKenna, and L. van den Dries [5] have shown that the

only theories of fields which permit elimination of quantifiers (in their natural

languages) are those which previously had been known to do so. Namely, the

only infinite fields whose theories permit elimination of quantifiers are the

algebraically closed fields. The only ordered fields whose theories permit

elimination of quantifiers are the real closed ordered fields. Analogous

statements hold for valued fields, formally p-adic fields, and formally w-adic

fields. These assertions are converses to well-known results of A. Tarski and

A. Robinson and more recent results of A. Macintyre.

The purpose of this paper is to show that these converses follow from more

general results concerning which universal theories of integral domains have

the amalgamation property. For the case of ordinary fields, the crux of the

matter is that if a universal theory T of integral domains has the amalgama-

tion property, then the infinite, existentially complete models of T are

algebraically closed. The result on elimination of quantifiers then follows

from the connection between amalgamation and elimination of quantifiers

and from standard facts about model-companions.

§1 contains preliminary information and the connection between amalga-

mation and elimination of quantifiers. §2 considers the case of fields and

integral domains. §3 considers the case of ordered fields and ordered integral

domains. §4 contains comments on the other cases and also raises a question

for further investigation. Not surprisingly the proofs in §§2 and 3 use some of

the techniques developed in [5].
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1. Preliminaries. The symbols x,y and z will be used both as variable

symbols in first order languages and as variables for forming polynomials

over rings. The symbols a, b, c, r, s, t, a and ß will be used both as constant

symbols in first order languages and as symbols to denote elements of

structures with the convention that b as a constant symbol is assigned to the

element b of a structure. The notation <p(x) for a formula <f> indicates that the

free variable of <i> are among x,, . . . , x„.

The reader is referred to [2] and [3] for relevant facts about model-compan-

ions and existentially complete structures.

A first order theory T has the amalgamation property if whenever a model

9L of F is a submodel of models 9H, and ^ of F, then there is a model 911,

of F and embeddings / of 911, into 911, and g of ^ into 911, such that

fia) = g(a) for each element a of 911.

P. Bacsich [1] has shown that a universal theory F has the amalgamation

property if and only if whenever <b(x) is an existential formula, \¡/(x) is a

universal formula, and F h Vx(<í> -* \¡/), then there is a quantifier free formula

X(x) such that T h Vx((p -» x) and F h Vx(x -» ¡p).

The following lemma is essential to this paper.

Lemma 1.1. Assume that T is a universal theory with the amalgamation

property. For each universal formula t//(x), let A = A(^) = (x(x): x ¡s quantifier

free and T h Vx(x -* \j/)}. If 911 is an existentially complete model of T, then

9H 1= Vx(\(/ «-* V A), where \/A denotes the possibly infinite disjunction of the

formulas in A.

Proof. Let A' = {<p(x): <f> is existential and F h Vx(</> -» ^)}. Let 9H be an

existentially complete model of T. It is well known (see the proof of Proposi-

tion 6.1(i) in [3]) that 911 t= Vx(>|/ «h> V A'). For each <f> in A' there is a x in A

such that F h Vx(«p -» x) and T h Vx(x -h> \p). Hence 911 N Vx(^ >w V A).

Since each formula in A may be put into disjunctive normal form, one may

assume, and hereafter it will be assumed, that each formula in A(t|/) is a

conjunction of atomic formulas and negated atomic formulas.

The set of universal formulas deducible from a theory T will be denoted by

Fv and will be called the universal subtheory of F.

The following proposition (noted independently by L. van den Dries [9])

follows readily from P. Bacsich's result or from results of A. Robinson and L.

Blum [7].

Proposition 1.2. The following are equivalent for a first order theory T:

(1) Tpermits elimination of quantifiers;

(2) T satisfies the submodel condition [8, §5.5] and Fv has the amalgamation

property.

2. Theories of fields and integral domains. In this section, the first order

language £ will have nonlogical symbols 0, 1,4-, — , and •.

Theorem 2.1. Assume that S is a universal theory of integral domains,
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5 1—1(0 = 1), and S has the amalgamation property. If 911 is an existentially

complete model of S, then 9It is either a finite field or an algebraically closed

field.

Proof. If 911 is finite, then it is a field since every finite integral domain is

a field. Assume then that 9L is infinite. Then 911 has an extension which is

existentially complete for S and which contains an infinite set of elements

which are algebraically independent over the quotient field K of the prime

subring R of 911 (take a suitable ultrapower of 9H and then extend to an

existentially complete model of S). Now 911 is algebraically closed if this

extension is, so one may assume without loss of generality that 9H itself

contains such a set of elements.

Sublemma 2.2. If\p(\) is a universal formula, ax, . . ., an are elements of 9L

which are algebraically independent over K, and 9R, V -i t//(a), rAen 9111= -i t/<(b)

whenever bx, . . . ,bn are algebraically independent over K.

Proof of sublemma. According to Lemma 1.1, 91L N Vx(t// <-* V A(tf>)) and

by assumption each formula in A(\p) is a conjunction of atomic formulas and

negated atomic formulas. Now each atomic formula has the form p(x) = 0

where p(x) is a polynomial with integer coefficients. Since 911 V x(a) for any

X E A(\¡/), each x in A(i//) has a conjunct p(x) = 0 where p(x) is a nontrivial

polynomial. Therefore, 9IL V x(b) for any x in A(\p), so 9H t= -i *¡<(b).

Proof of 2.1 (continued).

(1) Each transcendental element of 9L has an nth root in 911 for each

n > 2. To verify this, let / E 91L be transcendental and apply Sublemma 2.2

to the formula Vy(-\y" = x) and the element t".

(2) Each transcendental element of 911 has a multiplicative inverse. To

verify this, let \p(x) be the formula Vy -i (xy = 1). Let t be a transcendental

element of 9lt. Then t2 + 1 is transcendental, so it has a square root s by (1).

Then (s + /)($ - t) = s2 - t2 = t2 + I - t2 = I. Also s + t is transcenden-

tal, so one can apply Sublemma 2.2 to \f/ and s + t.

(3) Each nonzero element of 9H has a multiplicative inverse. To show this,

let 0 ¥^ a E 9H and let t be an element of 9lt which is transcendental over

the quotient field of R[a]. Then at is transcendental, so by (2) it has an

inverse s. Then a(ts) = I. Hence 91L is a field.

(4) Each element of 91L has an nth root for each n > 2. Let 0 ?*= a G 9!t

and let t be an element of 91L which is transcendental over the quotient field

of R[a]. Then at" is transcendental, so it has an nth root s, i.e., s" = at".

Then (st~ ')" = a. Thus 9IL is perfect.

(5) If elements bx, . . . , bn of 91L are algebraically independent over K, then

the polynomial y " + bxy"~x + ■ ■ ■ +bn has a zero in 91L. To prove this, let

/,,..., tn be elements of 9H which are algebraically independent over K. Let

sx(x) = xx + ■ • • + xn, . . . , sn(x) = xx • • • xn be the elementary symmetric

functions. Then
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fi (y - ti)=y" + (-l)sx(t)y»-x +■■■ + (-l)\(t).
<-i

The elements - sx(t), ...,(— l)\(t) are algebraically independent over A.

Thus, one can apply Sublemma 2.2 to the formula

\/y^(yn + xxy"-x + ■ ■ • +x„ = 0)

and the elements - sx(t), ...,(- l)"s„(t).

(6) 911 is algebraically closed. Suppose not. Then there is an a G 91L —

9IL, where 911 is the algebraic closure of 91L. Let n be the degree of an

irreducible polynomial of a over 9lt, and let a = ax, . . . , an be the distinct

conjugates of a over 9H (recall that 91L is perfect by (4)). Let /,,..., r„ be

elements of 9IL which are algebraically independent over the quotient field L

of the subring of 9H generated by the prime subring and the coefficients of

the monic irreducible polynomial for a over 911. Let

n

Ay, t) = LT (y - (tx + /2«, + • • • +t„ar1))
/=i

= y" + giWv"-1 + • • • +g„(t).

In the proof of Theorem 1 of [5], it is shown in essence that g,(t), . . . , g„(t)

are elements of 91L and are algebraically independent over L and hence over

A. Therefore, by (5), there is a c G 91L such that/(c, t) = 0, so c = /, 4- t2a¡

4- • • • 4- tna"~ ' for some i, 1 < i < n. But this contradicts that a has degree

n over 911, for a must have the same degree as its conjugate a, and a, cannot

have degree n over 91L if c = /, 4- t2a¡ 4- • ■ • t„a,"~x is in 9H. Hence, 91L is

algebraically closed.

Corollary 2.3. If T is a theory of integral domains in the language £,

T \—1(0 = 1), T permits elimination of quantifiers, and 9IL is a model of T,

then 911 is either a finite field or an algebraically closed field. Moreover, if 911

is a finite field, then it is the only model of T of its characteristic.

Proof. Since F permits elimination of quantifiers, Fv has the amalgama-

tion property. Furthermore, F is the model-companion of Fv, so each model

of T is an existentially complete model of Fv. The main conclusion now

follows from Theorem 2.1. If moreover 9H is finite, then it cannot be

embedded in any larger model of F. Yet since Fv has amalgamation, 9lt can

be jointly embedded with any other model of F of the same characteristic as

91L into a third model of T. Hence 9H must be the only model of T of its

characteristic.

Corollary 2.4 (A. Macintyre [4], B. Rose [6]). // 9H is an integral

domain and the complete theory of 911 in the language £ permits elimination of

quantifiers, then 911 is either a finite field or an algebraically closed field.
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3. Theories of ordered fields and ordered integral domains. In this section

the first order language £ will have nonlogical symbols 0, 1,+ ,-,-,< .

Theorem 3.1. Assume that S is a universal theory of ordered integral

domains, S r- -i(0 = 1), and S has the amalgamation property. If 91L is an

existentially complete model of S, then 9H is a real closed field.

Proof. 9lt has characteristic 0 and so is infinite. By forming a suitable

ultrapower of 9H and then extending to an existentially complete model of S

if necessary, one may assume that 9H contains an infinite set V of elements

which are algebraically independent over the rational numbers Q and have

the property that the integers Z are not cofinal in the subring Z[t] for any

t G V. An element s of 91L will be called positive infinite if s > n for each

n E Z. An element s of 91L will be called an infinitesimal if 0 < s < l/n for

all n E Z or if - 1/n < s < 0 for all n E Z.

Sublemma 3.2. If \j/(x) is a universal formula, a E 9H is positive infinite (or

positive infinitesimal) and 9IL I—i ¡p(a), then 9111= -i ip(b) for each positive

infinite (positive infinitesimal, respectively) b E 9IL.

Proof of sublemma. As before, 9H N Vx(^ <-» V A(\p)) and each formula

in A(\p) is a quantifier free conjunction. In the case of ordered integral

domains, the conjuncts can be assumed to have the form p(x) = 0 or

0 < q(x) where p(x) and q(x) are polynomials with integer coefficients. Since

911 ¥ \p(a), each formula x in A(\p) has a conjunct p(x) = 0 for a nontrivial

polynomial p(x) or a conjunct 0 < q(x) where the coefficient of the highest

power of x in q (the coefficient of the least power of x in q with a nonzero

coefficient when a is positive infinitesimal) is negative. Hence, if b is positive

infinite (positive infinitesimal, respectively), then 91L ¥ x(b) for any x in A(\p),

so 911 1= -, yp(b).

Proof of Theorem 3.1 (continued).

(1) Each positive infinite element has an nth root for each n > 2. To verify

this, let t E 911 be positive infinite, and apply the sublemma to the formula

Vy~i(y" = x) and the element t".

(2) Each infinite element has a multiplicative inverse. To verify this, let / be

a positive infinite element. Then t2 + 1 is positive infinite and so by (1) has a

square root s which is positive infinite. Then s + t is positive infinite and

(s + t)(s — t) = 1. Now apply the sublemma to the formula Vy-i(xy = 1)

and the element s + t.

(3) Each nonzero, noninfinitesimal element has a multiplicative inverse. To

prove this, let b ¥= 0 be a noninfinitesimal element. If b is negative, then one

can replace b by - b to obtain a positive element. Let t be a positive infinite

element. Then bt is positive infinite so it has an inverse c. Then b(tc) = 1.

(4) Each infinitesimal element has a multiplicative inverse. To show this, let

\p(x) be the formula Vy-i(xy = 1). Suppose that A is a positive infinitesimal

and 911 N \p(b). Then there is a x(x) in A(\p) for which 91L t= x(A). Since b is
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positive infinitesimal, x has only conjuncts of the formp(x) = 0 for the trivial

polynomial p(x) and the form 0 < q(x) where the coefficient of the least

power of x with a nonzero coefficient (including possibly the zeroth power) is

positive. Then there is a positive rational number r close to zero such that

9IL 1= x(r)> Dut then 9H N yp(r) contradicting (3) that r has a multiplicative

inverse. Hence 911 N -i $(b). Therefore each positive infinitesimal and so each

infinitesimal have multiplicative inverses.

(5) Each positive element has a square root. To verify this, let b be a

positive element. If b is infinitesimal, then one may replace b by b~x. Let / be

a positive infinite element. Then bt2 is positive infinite and so has a square

root by (1). Then (st~x)2 = b.

(6) If tx, ■ • - , tn G 9IL are algebraically independent over Q and n is odd,

then the polynomial y " + txy"~x + • • • +tn has a zero in 911. Suppose this

is false. Then there are algebraically independent elements tx, . . . ,tn for

which 9H N ̂ (t) where \p(x) is the formula

Vy-i(y" 4- xxy"~x + ■ ■ ■ + xn = 0).

There is a formula x(x) in A(ip) for which 9H t= x(t)- As before, x may be

assumed to be a conjunction of formulas of the form p(x) = 0 and 0 < q(x)

since S is a theory of ordered integral domains. Moreover, for each conjunct

of the form p(x) = 0 the polynomial p(x) must be trivial. Let 0 < q¡(x) for

/ = 1, . . . , k be the remaining conjuncts of x, so

9lt N A o < q¡(t).
1 = 1

Then the real closure 9Ü of 9H satisfies 3x(/\k_x0 < q¡(x)) so the real

closure Q of Q satisfies 3x(/\*_ ,0 < q¡(x)). Clearly,

% = l(bx,..., btt) G ß": Q \r A0 < ?,(b)J

is an open set in Q". Let (bx, . . . , bn) G %. Let ß G Q be a zero of

y" 4- bxy"~x + ■ ■ ■ + b„ = h(y, b), so that

h(y, b) = (y -ß){y"-x + cxyn~2 +■■■ +c„_,)

for some cx, . . . , c„_, G Q. Choosing rational numbers ß', c'x, . . ., c'n_x

sufficiently close to ß,cx, . . . , c„_,, respectively, and setting

h(y,b')=yn + b'xy"-x + ■ • ■ +b'„

= (y - ß')(yn-x + c\y"-2 + ■ ■ ■ +<-,),

one has that (b\, ..., b'„) € %. Then 9IL N \(b'x, ■ ■ ■ , b'n) so 9IL N »Kb'), but
this contradicts that y " 4- b\y"~x + ■ ■ ■ + b'„ has the zero ß' in 91L. Hence,

y" 4- txy"~x + ■ • ■ +t„ has a zero in 9IL.

(7) 9lt is real closed. Suppose that ax, . . . , an G 91t, n is odd, and

yn-r-a,y''~1-r---- +an does not have a zero. Then proceeding as in step
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(6) in the proof of Theorem 2.1, one obtains a contradiction. Hence 9lt is real

closed.

Corollary 3.3. If T is a theory of ordered integral domains, T\—,(0=1)

and T permits elimination of quantifiers, then each model of T is a real closed

ordered field.

Proof. The proof is analogous to that of Corollary 2.3.

Corollary 3.4 (A. Macintyre, K. McKenna, and L. van den Dries [5]).

If 911 is a nontrivial, ordered integral domain and the complete theory of T in

the language £ permits elimination of quantifiers, then 91L is a real closed

ordered field.

4. Remarks. Theorems 5 and 6 of [5] concerning formally />-adic integral

domains and w-adic integral domains whose theories permit elimination of

quantifiers can be proved in a manner analogous to 3.1-3.4.

The theory of valued fields is the only remaining case in [5] as yet

unmentioned here. In view of the preceding results, it seems reasonable that if

T is a theory of valued integral domains (or more technically, integral

domains with a linear divisibility relation as in [5]) and T has the amalgama-

tion property, then the existentially complete models of T are algebraically

closed, valued fields. However, this remains unproved because of technical

difficulties in proving Lemma 11 of [5] in the absence of an analogue of

Lemma 9 of [5].

B. Rose [6] has proved several results concerning rings (not necessarily

commutative or domains of integrity) whose theories permit elimination of

quantifiers. It would be interesting to know whether there are corresponding

results on rings whose universal subtheories have the amalgamation property

as in the cases discussed in this paper.

Note added in proof. B. Rose has pointed out that in the proof of

Theorem 2.1, if 91L has characteristic 2, then part (2) must be modified as

follows: Let 5 be a cube root of t3 + 1. Then (s - t)(s2 + ts + t2) = 1. The

element s — t is transcendental, because í is a zero of the polynomial

(x + (s — t))3 — x3 — 1. Therefore, one can apply Sublemma 2.2 to the \j/ of

part (2) and the element s — t.
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