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ON REMOTE POINTS IN vX - X

TOSHUI TERADA

Abstract. Under a certain set-theoretic assumption, a question of E. K. van

Douwen is solved. More precisely, if the cellularity c(X) of a space X is

nonmeasurable, then vX — X contains no remote point of X.

All spaces considered here are Tychonoff. For a space A, ßX is the

Stone-Cech compactification and vX is the Hewitt realcompactification of A.

A point p G ßX — X is said to be remote if p $. C\ßXD for every nowhere

dense subset D of A. In [1], Eric K. van Douwen discussed fully the theory of

remote points. He raised the following question: Can vX — X contain a

remote point of A?

In this note we shall show that under a certain set-theoretic assumption

vX — X cannot contain a remote point of A.

A cardinal m is called measurable if a set A of cardinality m admits a

{0, 1}-valued measure p such that v(X) = 1, and p({x)) = 0 for every x E A.

The proposition that no measurable cardinal exists is known to be consistent

with ZFC (see [2]). Let us recall a cardinal function given in [3]. The

cellularity of a space A is c(A) = sup{|%.|: % is a family of pairwise disjoint

nonempty open subsets of A).

Theorem. For a space X, if c(X) is nonmeasurable, then vX — X contains no

remote point of X.

Proof. Let p be a point of uA - X. Let % be a maximal collection of

pairwise disjoint nonempty open subsets of A such that p £ Cl^ U for each

t/el Then |%| is nonmeasurable since |9i,| < c(X). Let D = A - \J <SIL,

where (J % = U [U: U G %}. Then D is a nowhere dense subset of A.

Hence to see that p is not a remote point of A it suffices to show that

p G ClßXD. Assume thatp £ ClßXD. Let

8- {T:Tc%,j>6Ex,(U'V)},

where Ex^ U = ßX — Cl^A.(Ar — U) for every open subset U of A. We shall

show that g is an ultrafilter on %- with the countable intersection property.

Since

Ex,r(n { U,: i = 0, 1, . . . , «}) = n {Ex^L/.: / = 0, 1, . . . , «}

for each finite collection {U¡: i = 0, 1, ...,«} of open subsets of A (see [1]),
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5 has the finite intersection property. Let T be a subcollection of %. Since

BX = CV( U T) u CV( U (% - T»

= (Bd/w(Exjr(UcV)) U Exx(UT))

U (Bd^(Ex^(U(% - T») u Ex^(U(% - T»)

= (CV(Bd^(UcV))uEx^(UcV))

U (CV(Bd^(U(% - eV))) U Ex^(U(% - T)))

= Cl^Z) u ExjfU^U Ex,r(U(% - T»

and p E ClßxD, it is obvious that p E Ex^U T) or /> G Ex^U (%- - T))-

This implies that ,5 is an ultrafilter on %. Let us show that g has the

countable intersection property. Assume that there is a sequence {°Vj. : / < «}

of elements of 3 such that

<V« D {%:i< «} « §.

Then /? G Cl^í (J T) since

Cl^( U °V) = Ex*( U T) u Bd^(Ex^( U «V)),

^ € Ex^UT) and /> « Bd^iEx^ U T)) = Cl^Bd^ U T» c Cl^Z).
Hence there is a zero-set Zu of ßX such that p E Za and Zw n Cl^ U °V) =

0. On the other hand, for each / < w there is a zero-set Z, of /?A" such that

p E Z¡ and Z,. c Ex^U %)■ Now, let Z = H [Zt\ i < w). Then Z is a

zero-set of ßX which contains/?. Since

u t= u(n{%:i <<*})= n{u°v;:i<«},
z nx c(n{ucv;:/<a)})n(x-ciA.(ucv)) = 0.

But this is a contradiction since p E vX. Hence g has the countable intersec-

tion property. But, since {U} E ¡5 for each U E %, this contradicts the fact

that | % | is nonmeasurable (see [2]).

Corollary 1. Assume that every cardinal is nonmeasurable. Then vX — X

contains no remote point of X for any space X.

Corollary 2. Assume that every cardinal is nonmeasurable. If X has a

remote point, then X is not pseudocompact.

Corollary 2 shows that nonpseudocompactness is essential to have a remote

point.

Remark. The converse of the above Theorem is not true (i.e. the non-

measurability of c(X) need not be implied by the fact that vX — X contains

no remote point of A"). However the nonmeasurability of c(X) cannot be

dropped in the Theorem. In fact, let M be a discrete space of measurable
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cardinality. Then vM — M is nonempty, and every point of vM — M is a

remote point of M.
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