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CONTRACTIFICATION OF A SEMIGROUP OF MAPS

HWEI-MEI KO1 AND KOK-KEONG TAN2

Abstract. Let (X, t) be a metrizable topological space, 9(t) be the family

of all metrics on X whose metric topologies are t. Assume that the semi-

group F of maps from X into itself, with composition as its semigroup

operation, is equicontinuous under some d G 9(t); then we have the

following results:

I. There exists d' G 9(t) such that/ is nonexpansive under d' for each

feF.
II. If F is countable, commutative, and for each / G F, there is x, G X

such that the sequence (/"(x))ü°_ x converges to x¡, Vx G X, then there exists

d" G 9(t) such that/is contractive under d" for each/ G F.

III. If there is p G X such that (1) \imn^xf"(x) = p, Viev and

V/ G F, (2) there is a neighbourhood B of p such that

>»«>».-.«/«,/«, • • • f«SB) = (P) for any choice of/a£F, i-l,...,m,
and the limit depends on m only, then for each X with 0 < X < 1, there

exists d'" G 9 (t) such that each / in F is a Banach contraction under rf'"

with Lipschitz constant X.

1. Introduction. Let (A, d) be a metric space. A map/: A -*• A is nonexpan-

sive if d(f(x),f(y)) < d(x,y) for all x,y E A. If x =ty => d(f(x),f(y)) <

d(x, y), then we say / is Edelstein contractive or simply contractive. Let F be

a family of maps on the metric space (A, d). It is evident that F is equicon-

tinuous on A if each / in F is nonexpansive. However if F is equicontinuous

on A under d, one cannot claim that even a single map in F is nonexpansive

with respect to this metric d. However in the case when F is a semigroup

(where the semigroup operation is understood as the composition of maps),

we prove that there is a metric d' equivalent to d such that each map in F is

nonexpansive under d'. Therefore the notions of equicontinuity and nonex-

pansiveness of a semigroup of maps are metrically equivalent in the sense that

both notions are compatible under some metric which preserves the original

metric topology. Furthermore, if F is countable and commutative such that

for each/ E F the iterate sequence {/"(x)} converges to the same point for

every x E A, then there is a metric d" equivalent to d such that each/in F is

Edelstein contractive with respect to d". Finally for a not necessarily count-
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able nor commutative semigroup of maps F, under an additional condition,

we prove that there is a metric d'" equivalent to d such that each / in F is a

Banach contraction with respect to d'" with the same Lipschitz constant.

2. The contractificai ion of a countable commutative semigroup of maps. For

a metrizable topological space (X, t), let 9 (t) be the family of all metrics on

X whose metric topologies are t.

Theorem 1. Let (X, r) be a metrizable topological space and let F be a

semigroup of maps from X into itself. If for some d E 9 (t), F is equicontinuous

on X under d, then there exists d' E *$ (t) such that f is nonexpansive under d'

for each f in F.

Proof. Without loss of generality, we may assume that the identity map /

is in F. Since F is also equicontinuous under the metric 1 A 4 ((1 A d)(x,y)

= min{l, d(x,y)}) and I /\d E 9(t), we may assume that d is a bounded

metric. Define

d'(x,y) = sup{d(f(x),f(y)):f EF)    forx,y E X.

It is easy to see that d' is a metric on A". If g G F, we see that

d'(g(x),g(y)) = snp{d(f(g(x)),f(g(y))):f E F)

< sup{d(h(x), h(y)): A G F) = d'(x,y),

so that g is nonexpansive with respect to d' for each g E F. It remains to

show that d' is equivalent to d. As d'(x, y) > d(x, y) for any x,y G X, it

suffices to show that for any sequence (xn)™_, in X and x E X, d(xn, x) -* 0

as n -» oo implies d'(x„, x) -» 0 as n -» oo. Indeed, let e > 0 be arbitrarily

given. Since F is equicontinuous at x, there exists 8 > 0 such that

d(y,x)<8=>d(f(y),f(x))<e/2,   V/ G F. (*)

Since d(xn, x) -» 0 as n -> oo, there is a positive integer N such that d(xn, x)

< 8, Vn > N. But then for each n > N,3fn E F such that

d'(xn,x)<d(f„(xn),fn(x)) + e/2. (*.)

It follows from (*) and (**) that Vn > N,

d'(xn, x) < d(fn(xn),fn(x)) + e/2 < e/2 + e/2 = e.

Hence d'(xn, x) —> 0 as n -» oo

In particular, if we take F in Theorem 1 to be the iterates {/": n = 1,

2, . . . } of a single map/ then we have:

Corollary 1.1. Let (X, t) be a metrizable topological space and let f be a

map on X to itself. If for some d E 9 (r) the iterate sequence of maps (/")"_ i is

equicontinuous under d, then there exists d' E ty (t) such that f is nonexpansive

under d'.
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Theorem 2. Let (A, t) be a metrizable topological space and let F be a

semigroup of maps from X into itself which is equicontinuous under some

d G ^(t). Letf G F be such that

(1) f commutes with each g in F,

(2) for some a G X, the sequence (/n(x))^°_, converges to a for each x E A.

Then there exists a metric d' in 9 (t) such that f is contractive and each g in

F is nonexpansive under d'.

Proof. By Theorem 1 there is a metric d G ty (r) such that each g in F is

nonexpansive under d. Now define

d'(x,y)= | ±¡d(f"(x),f"(y))    forx,y G X,
n = 0 ¿

where f° is the identity map on X. Clearly d' is a metric on A and d' is

equivalent to d because d < d' < 2d. Also each g G F is <f-nonexpansive,

since

d'(g(x),g(y))= I ^d(f(g(x)),f(g(y)))
n-0 l

= 2 ^d(g(r(x)),g(f"(y)))
n = 0 l

<  S ^d(f(x), f(y)) = d'(x,y),   \/x,y G X.
n-0 ¿

To prove that / is contractive with respect to d', let x,y G X with x ^y.

Suppose d'(fix), fiy)) = d'(x, y). Then by the definition of d', we have

d(fn + x(x),f+x(y)) = d(f(x),f(y)),   V« = 0, 1, 2, ... .

This implies d(fn(x),fn(y)) = d(x,y)¥=0, V« = 1, 2, . . . , which con-

tradicts the fact that f(x) -» a and f(y) -* a. Hence / is contractive under

d'.

The following definition can be found in [3].

Definition. Let F be a family of maps on a topological space A to a

topological space Y. F is evenly continuous on A if for each x E A, each

y G Y and each neighbourhood Uofy, there is a neighbourhood V of x and

a neighbourhood W ofy such that fiV) c U whenever fix) G IV, f G F.

It is clear from the definition that if F is equicontinuous under some

d E 9 (t), then F is evenly continuous.

Corollary 2.1. Let (X, t) be a metrizable topological space and f: X -» A.

Assume

(1) there exists a G X such that the sequence (/n(x))"_, converges to a for

each x G X,

(2) the family [f: n = 1,2, ...} is evenly continuous on X.

Then there exists d' G ty (t) such that f is contractive under d'.
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Proof. It follows from Theorem 2 and the fact that (1) and (2) imply the

equicontinuity of F = {/": n = 1, 2, . . . } under any d E ^P(t) (see [3]).

Corollary 2.2. Let (X, t) be a metrizable topological space and f: X -» X.

Assume that the sequence (f"(x))^x converges for each x E X, and the family

{/": n = 1, 2, . . . ) is evenly continuous. Then the following are equivalent:

(1) there exists d' E 9(t) such that fis contractive under d';

(2) there exists a EX such that the sequence (/"(•*))",. x converges to a for

each x E X;

(3) for any nonempty compact f-invariant subset Y of X, D "_ i/"( 10 is a

singleton.

Proof. The implication (3) => (2) is trivial under the assumption that

(f"(x))T-1 converges for each x E X and that / is continuous. Corollary 2.1

shows that (2)=>(1). To prove (1)=>(3), let y be a nonempty compact

/-invariant subset of X. Set A = fC_, /"( Y). Then / maps A onto A. As f(A )

is compact, there exists x,y E A such that d'(fix), fiy)) is the diameter

8(f(A)) oifiA) under d'. Suppose x i=y, then

8(f(A)) = d'(fix), fiy)) < d'(x,y) < 8(A).

This contradicts the fact that f(A) = A. Hence 8(f(A)) = 0, i.e., A is a

singleton.

Remarks, (i) Note that the assumptions in Corollary 2.2 are equivalent to

that {/": n = 1, 2, ... ) is equicontinuous under any d E 9(r) and

(/"(*))"-1 converges for each x E X.

(ii) The assumption that {/": n = 1, 2,. . . } is evenly continuous in

Corollary 2.2 cannot be weakened to the condition that / is continuous

without affecting the equivalences of (1), (2) and (3). In fact, the counterex-

ample in [2] shows that (1) and (3) are not equivalent if {/": n = 1, 2, . . . } is

not equicontinuous. This means that the main result in [1] is false. The

following example shows that (2) and (3) are not equivalent if {/": n = 1,

2, . . . } is not equicontinuous.

Example. Let X be the set of all integers equipped with discrete topology,

and let X* = X u {oo} be the one point compactification of X. Define /:

X* -> X* as follows: fin) = n + 1, Vn G X, and /(oo) = oo. Then / is con-

tinuous on A"* such that f"(x) -» oo as n -> oo, Vx G X*. Note that X* is

metrizable since it is a Hausdorff space with a countable base. It is evident

that D"_i/"(A'*) = X*. So now we have the continuous map / on the

compact metrizable topological space X* such that (2) of Corollary 2.2 is

satisfied but not (3). The crucial point is that the family {/": n = 1, 2, . . . } is

not equicontinuous at the point oo, although it is equicontinuous at any other

point of X*.

Now we come to our main object of this section.
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Theorem 3. Let (X, t) be a metrizable topological space, and let F be a

countable commutative semigroup of maps from X into itself. If F satisfies the

conditions

(1) for each f E F, there exists xf G X such that the sequence (/"(x))"_,

converges to x¡, for all x G X,

(2) F is equicontinuous under some d G ^(t),

then there exists d' G 9 (t) such that f is contractive under d' for each f G F.

Proof. We may write F = {fx,f2,f3, ■ ■ ■ } for it is countable. Apply

Theorem 2 to each map /„; we get a metric dn G 9(t) such that /„ is

contractive under d„ and fk is nonexpansive under d„ for each k > 1. Now we

have a sequence of metrics dn in 9 (t), from which we define

a«      \      V     l      dn(x,y)
d'(x,y) = 2    ~ «   ,    ,,      x.   Vx,y e A.

„ = i   2   14- d„(x, y)

It is clear that d' is a metric on A. By the special property of the real valued

function g(r) = r/(l + r), r > 0 (g(r) is strictly increasing and g(r) -» 0 <=> r

-» 0), one can prove that d' G 9 (t). Each /t in F is nonexpansive under d',

for

d(fk(x),fk(y)) = Z ^
~, 2" 1 + dn(fk(x),fk(y))

«    1      ¿„(x,y)
<  ^   yu^,„) =^(x,y).

„ = i 2   14- d„(x,y)

Next we prove that fk is contractive under d' for each k > 1. Suppose on the

contrary that some fk is not contractive under d'. Then there exist x,y in A,

x ^y, such that d'(fk(x),fk(y)) = ¿/'(x^y)- This implies

dH(fk(x),fk(y)) d„(x,y)

1 + dn(fk(x),fk(y))      \ + d„(x,y)'
V« = 1, 2,

which in turn implies dn(fk(x), fk(y)) = dn(x,y), V« = 1, 2, . . ., and, in

particular, that dk(fk(x), fk(y)) = dk(x,y). This contradicts the fact that/A is

contractive under dk. Hence each fk in F is contractive under d'. This

completes the proof.

3. The uniform contractif¡cation of a semigroup of maps.

Theorem 4. Let (A, t) be a metrizable topological space, let F be a

semigroup, not necessarily commutative, of maps from X into itself, and let

p G X. Assume that F satisfies the following conditions:

(D lim^/'Xx) = p, Vx G X andf G F;

(2) there exists a neighbourhood B of p such that limm_>a>/„i • • • f„J(B) =

{p} for any choice of maps /„ E F, i = I, . . . , m, and the limit depends on m

only;
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(3) F is equicontinuous under some d E 9 (r).

Then for each X with 0 < X < 1, there exists a metric d' E 9(t) such that

each f E F is a Banach contraction with Lipschitz constant X.

Proof. Apply Theorem 1 to get a metric d E 9 (t) such that each / G F is

nonexpansive under d. By (2) we may assume B to be a rf-open ball with

centre p and satisfying condition (2). Then B is invariant under each f E F.

For each positive integer m, define

(4)A0 = {B},Am = {/„, • ■ • /Jfi):/fll, ... ,4 G F},

A-m={(fnr--fJ~\B):fn¡,...,fnmEF}.

Let / be the set of all integers. Then we have

(5) Am+, is a refinement of Am for m E I;

(6) Ume/ A®m is an open covering of X, where A^m = {the interior of A:

AEAJ;   '
(7) limm_00 d[ U A (iAm -4] = 0, where d[Q] is the ¿/-diameter of the set 6.

It is evident that (5) and (7) follow from (4) and (2), respectively. (6)

follows from (1) and the fact that Am is a family of open sets for m < 0. For

xy E X, let S(x, y) be the set of all possible finite sequences «x„ n,))™_0 in

X X I where x0 = x, xm = y and for each / = 1, . . ., m, {*,_„ x¡) c A for

some A G An. Let X, 0 < X < 1, be given. For x,y Elwe define

m

d'(x,y)=   inf     2*M*,-i.*/).
§(**>•)  , = i

where the infimum is taken over all members «x„ n,>)™_0 in the set S(x,y).

As S (x, _y) is nonempty for each x,y E X, d' is well defined on A" X A". It is

easy to check that d' is a pseudometric on X. We claim that

(8) d'(f(x),f(y)) < M'Ocy), V/ G Fand x,.y G X.
To prove this, let «jc„ n,>)™.0 be a member of %(x,y). Then «/(*,), n, +

1»¡10 is a member of S (fix), fiy)). By the definition of d' we have

m m

d'(fix),f(y)) < 2 ** + Irf(/(*,-,),/Î*,)) < A 2 XVO.--1, *,).
i-\ 1-1

and hence

m

d'(f(x),f(y)) < X inf   2 XM*,-„ x,) = X¿W)-
S(jc^) , = i

It remains to prove that d' is a metric and is equivalent to d. To this end we

prove

(9) d' < X"d on An for all n G /, and

(10) d < X~nd' + d[\JAeAn A) for each n G /.

One sees that (9) follows from the definition of d' and (10) is equivalent to

(11) X"d(x,y) < 27L, XV(x,._„ x,) + X"d[(JAf=An A], Vn G /, for each

member «*,., n,»™_0 in S (x, y).

To prove (11), let «jc-, n,))™.0 be a member of Six,^) and n E I. We



CONTRACTIFICATION OF A SEMIGROUP OF MAPS 273

consider the following two cases:

(I) Suppose x, £ A for all i = 0, . . . , m and all A G An.

Then from (5) we see that «, < «, V/ = 0, . . . , m, and hence

(12) X" < A"-, Vi - 0,.... m. Thus

AV(x,y) < 2 a "</(*,_„*,) < 2 XV(x,_„x,).
í-i /-i

Hence (11) holds in this case.

(II) Suppose x, E A for some / and some A G An.

Let/ be the smallest integer and k be the largest integer such that Xj, xk

satisfy statement (II), and let L = (1, 2, ...,/, k + 1, . . . , m). Then

X"d(x,y) < X" 2 rf(*,_„ *,) + ^nd(xj, xk)
ieL

< 2 ^.„ïj + w
/EL

< 2 am*î-i»^) + à"</
1 = 1

U  ¿

U   A
A£A„

(because (12) holds for /EL)

Hence (11) also holds in this case. Therefore (10) is true for all « E /. From

(10) we see that if d'(x,y) = 0, then d(x,y) < d[\JA<=An A] for all « E /.

Letting n -» oo, we have d(x,y) = 0 and hence x = y. This shows that d' is a

metric on A. To show that d' is equivalent to d, let (xk)f_, be a sequence in A

and x0 E Z. First assume d(xk, x0) -> 0 as k -> oo. From (6) 3« E / such that

x0 E the interior of A for some A G An. As xA -» x0, 3N G I such that

A:>A=>xtEylE/ln. From (9) we have k > N => </'(**> x0) < X"d(xk, x0).

Hence d'(xk, x0) —* 0 as & —» oo. Conversely, let d'(xk, x0) —»0, as /c —» oo.

Then from (10) we have

(13) d(xk, x0) < A-,W'(xt, x0) 4- ^[U^g^ ^4], V« E / and any positive

integer /c. Given e > 0, from (7) and d'(xk, x0) -» 0 as /c —» oo, 3 positive

integers A, M such that i/[U^e^ A] < e/2 and <F(x-*» x0) < (e/2)XN, Vk >

M. Then from (13) we have

d(xk, x0) <- + -= e,

This shows d(xk, x0) ■

completes the proof.

Vfc > M.

0 as A: -> oo. Therefore í/' E ^(t) and (8) holds. This

Corollary 3.1. Let (X,r) be a metrizable topological space, F be a

semigroup of maps from X into itself, and p G X. Let F satisfy conditions (1)

and (2) of Theorem 4 and

(14) F is evenly continuous on X, and

(15) the closure of the set F[x] = {f(x):f G F} is compact for each x G X.

Then for each X with 0 < X < 1, there exists d' G ÍP(t) such that each fin F

is a Banach contraction under d' with Lipschitz constant X.
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Corollary 3.2 ([4, Theorem (i)]). Let (X, t) be a metrizable topological

space, and let f be a continuous map from X into itself. Let p G A* be fixed.

Then for any 0 < X < 1, there exists d' E 9(t) such that f is a Banach

contraction under d' with Lipschitz constant X and fip) = p if and only if

f"(x) —» p for each x E X and

(16) lim„^x f"(B) = {p} for some neighbourhood B of p.

Proof. The necessity is obvious. The sufficiency follows from Theorem 4

by observing that if F = {f,f2, . . . }, then (16) is equivalent to (2) in

Theorem 4, and furthermore, for a continuous map/ with f"(x) -»/>, Vx G X,

(16) implies that F is equicontinuous under some d E 9(r) (whose proof can

be found in the proof of Theorem (i) in [4]).

Remark. The main theorem in [5] states:

Theorem. Let (X, t) be a metrizable topological space and f be a continuous

self-map on X such that (i) / has a fixed point p which has an open neighbour-

hood with compact closure, (ii) for every x E X, the sequence (/n(x))"_,

converges to p. Then the following statements are equivalent

(A) For each X E (0, 1), there exists dx E 9(t), complete if X is topologically

complete, such that f is a Banach contraction under dx with contraction constant

X.
(B) The sequence of iterates of f is evenly continuous.

The implication (A)=>(B) is trivial. We shall show that the implication

(B) =* (A) can be derived from Corollary 3.2. To see this we prove that (16)

holds. Let B be a compact neighbourhood of p (by (i)). We claim that

lim,,^ f"(B) = {p}. Let d G ^^y Then from (ii) and (B), we see that

{/, f2, . . . } is equicontinuous under d. For any e > 0, let U = B(p, e) = [y

G X: d(y,p) < e). For any x G B, 38x > 0 such that

(17) d(y, x)<8x=* d(f(y),f(x)) < e/2, Vn.

From (ii), 3 positive integer Nx such that

(18) n> Nx^> d(f(x),p) < e/2.

Now {B(x, 8X), x E B) is an open cover of B which is compact, there exist

x, G B, i = 1, . . . , n, such that Be U ■_, B(x¡, 8J. Let N = maxi^: / =

1, . . . , n}. We claim that/"(5) c U, Vn > N. Indeed,

y E B =>y E B(x¡, 8X),   for some 1 < / < n,

^d(f(y),f(xi))<^,   Vn,   by (17),

=*d(f"(y),p) < d(f(y),r(xi)) + d(f"(Xi),p)

< | + | = e,    V« >N,    by (18),

=>/"O0 EU,    Vn > N.

Hence (16) holds.
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