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SIGN COMPATIBLE EXPRESSIONS FOR MINORS

OF THE MATRDCI - A

BY

D. J. HARTFIEL

Abstract. Let A = (atJ) be an n x n nonnegative matrix having row sums

less than or equal to one. This paper shows that the ijth minor of I - A can

be expressed as

(-ir'sibks,
where

n

rk = 1 - 2 a*
j— i

and each H r*^,, is a product of exactly n — 1 numbers taken from rk, apq for

k,p,q = 1, . . ., n. This theorem is then used to obtain perturbation results

concerning the matrix I — A.

Perturbation results in matrix theory are concerned with estimating the

error in matrix computations. This paper provides perturbation results for the

matrix I — A where A = (a¡) is nonnegative having row sums less than or

equal to one. The method by which these perturbation results are achieved is

a variant of that given by Sengupta [2] in his work on comparing stochastic

eigenvectors of two irreducible stochastic matrices. The method, as we apply

it, first gives expressions for the minors of I — A, in terms of the entries of A,

and then uses these expressions to produce useful perturbation results for this

matrix.

The theorem of the paper produces expressions for the minors of I — A.

Theorem. Let A be an « X « nonnegative matrix having largest row sum less

than or equal to one. Then

\(I-A)iJ\=(-l)i+J^]lrkapq

where

rk m 1  -   2    ufo
s=\

and each Ylrkapq is a product of exactly n — 1 numbers taken from rk, apq for

k,p,q = 1, . . . , «.
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e„ =

Proof. The method of proof is induction on n. The case n = 2 can be

proved by checking all choices for i and y. Thus, suppose the theorem is true

for all n X n matrices A, satisfying the hypothesis, where n < «,. Now let A

be an n X n matrix, satisfying the hypothesis, where n — nx. The argument is

divided into two cases. The first case to be considered is when / ^j. Here we

will assume /' <j as the case / >j is argued similarly.

For this case, we first define an n X n matrix Epq = (ers) where

1,     if r = s and r ¥^p, r ¥=q,

1,     if r — p and s = q,

1,    if r = q and s = p,

. 0,    otherwise.

£,_,„ a permutation matrix, and set P(I — A)P' = I —

PAP' = I - B. Then

\(i-A)0\ = (-iy-x\(i-B)XJ\.

Hence we need only prove the result for i = 1 and y > 1.

For this then we expand \(I — A)XJ\ about the 1st column achieving that

|(/ - A)y\ =   2 (-ir, + ,(-0,,)|[(/ - A)XJ]J
s>\

where [(/ - A)XJ]sX denotes the matrix obtained from (/ — A) by deleting

rows 1, s and columns j, 1.

Now noting that [(/ - A)XJ]sX = [(I - A)xx]sj and applying the induction

hypothesis yields that

Let P — Ex2E2j

\(i-A)iJ\= 2 (-i)*+1«,i|[U-^)n]Ji>i

= 2 (-l)í+1^,((-l)í+>2 n(rt + akx)apq)
s>\

= (-l)l+J2llrkapq

where each Urkapq is a product of exactly n — 1 numbers taken from rk,a   for

k,p, q = 1, . . .,n.

For the case /' = j, we assume without loss of generality that i = j = 1.

Write

(I-A)xx =

+   2 «2.
s*2

— a 32

'23

+   2   «3
i^3

-a, nl -a, 'nl

'2n

*3n

rn + 2 an
s^n
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Adding columns two through « — 1 to column one yields

[r2 + a2X -a23 ■■■ -a^

5 =
r3 4- a3X     r3 + 2 a3s

s¥>3

— a3«

r„ + a„,n ni "ni rn +  2 a«

Expanding the determinant about the first column of B and noting that

BsX = [(I — A)xx]s+l2 yields, by the induction hypothesis, that

n-\

i(/-^).,i= 2(-irv,+, + «,+,.i)i[(/-^)ii],+12i
í—i

= "Í\-iy+l(rs+x + a,+ M)((-l)'+,(2 uto + **,)*,)
i = 1

= 2 H- r*a„

where each Wrkapq is a product of exactly « — 1 numbers taken from rk, apq

fork,p,q = 1, . . . ,«.   D

This theorem is now applied to yield our first perturbation result. This

result estimates the error in computing (7 — A)~x, when it exists.

Corollary 1. Let A and A be n X n nonnegative matrices with row sums

less than or equal to one and having spectral radius less than 1. Set B = (I —

A)~x and B = (7- Â)~x. If

(1) a0 < 0ây, rk < 0fk and

(2) ây < Oay, fk < 0rk

then, for all by * 0, (bv - b^/by < 0-tf" - 1.

Proof. Note that

*-
(-l)i+i\(I - A)j\     and    £ _ (-l)i+J\(I -i),,-|

|(/-,4)| " |(/ -Ä)\

Thus, if by ¥= 0, application of the theorem yields that

_¿V = 1(7 - i),,| |7 - A\ < 0»-Xl - A)ß\e"\I - À\ < tflI_^
6,      |(/-^||/-^| |(/-^||/-^|

Hence,

°.   ° <0"-l0n- i. n

A second perturbation result estimates the error in solving Leontif s open

economic model.
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Corollary 2. Let A and A be n X n nonnegative matrices having largest

row sums less than or equal to one and having spectral radii less than one. Let b

and b be I X n nonnegative vectors with x(I — A) = b and x(I — A) = b. If

(1) ay < êây, rk(A) < êrk(Â), b¡ < 9b] and

(2) ay < 9atj, rk(A) < 9rk(A), bi < 9bt

then, far all x, ̂  0, (x¡ - *,)/*, < (99)" - 1.

Proof. Note first that x = (I - A)'xb and x = (I - Â)~xb. Then, if

x¡ ¥= 0, application of the theorem yields that

^ = 2,(-i),+'\(i-Â)ri\6,\l-A\ <    .

*i     \I - Â\ïr(-l)i+'\(I - A)ri\br

Hence

^-^ < (Bey - i. d
x¡

The last perturbation result estimates the error in computing stochastic

eigenvectors for stochastic matrices.

Corollary 3. Let A and A be nX n irreducible stochastic matrices. Suppose

a and â are stochastic eigenvectors, belonging to one, far A and A respectively.

If (l) a¡j < êây and (2) ay < 9au then («,. - a,)/a, < (99y~x - 1.

Proof. First note that the Perron-Frobenius theory [1] gives that if a and à

are stochastic eigenvectors, belonging to one, for A and A respectively, then a

and â are the unique solutions to

a(I - A) = 0with 2«,■ = 1    and   «(/-i) = 0with 2«, = 1.

Further, by the Perron-Frobenius theory, rank (I — A) = rank(7 — A) = n

- I with the first n - 1 columns of both I - A and I - Â being linearly

independent. Hence, the above equations are equivalent to

«[(* - A)„e] = en   and   â[(/ - Â)„e] = en

where (I - A)„ and (/ - Â)„ are obtained by deleting the nth column of

(I - A) and (/ - Â) respectively. Further e¡ is the (0, l)-vector having its

only nonzero entry in the ith position and e = ex + • • • +en. Now, by

Cramer's rule

«, = (- l),+ndet([(/ - A)ne]J/det[(I - A)„e]

and

«,. = (-l)'+ndet([(7 - Â)ne]J/det[(I - Â)ne].

Thus

Ô, m det([(7 - i)„e]Jdet[(7 - A)ne]

a,     det([(/-^)„e](Jdet[(/-i)„e]-
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Noting that det[(7 - Â)„e]in = det[(7 - Â)J and det[(7 - A)ne]in = det[(7

- A)in] and expanding det[(7 - A)„e] and det[(7 - Â)ne] about the last

column yields, by applying the theorem, that

(sïïr^xsn^)
Hence,

^-^ < (Of?)"-1 - 1.   D
«,
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