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A UNIQUENESS THEOREM FOR A

BOUNDARY VALUE PROBLEM

RIAZ A. USMANI

Abstract. In this paper it is proved that the two-point boundary value

problem, namely (d(4)/dx4 + f)y = g, y(0) - Ax = y(l) - A2 = y"(0) -

Bx = y "(I) - B2 = 0, has a unique solution provided infxf(x) = — -n >

— it4. The given boundary value problem is discretized by a finite difference

scheme. This numerical approximation is proved to be a second order

convergent process by establishing an error bound using the L2-norm of a

vector.

1. Introduction. Consider the real two-point linear boundary problem

Ly=[d^/dx4+f(x)]y = g(x),       0 < x < 1,

y(0) = Ax,   y(l) = A2,   y"(0) = Bx,   y"(l) = B2, (1)

where the functions fix) and g(x) E C[0, 1]. A more general problem of the

form

Ly = g(x),    y(a) = Äx,   y(b) = Ä2,    y"(a) = Bx,   y"(b) = B2

can always be transformed into (1) by means of a substitution of the form

X = (x — a)/(b — a). Problems of the form (1) frequently occur in plate

deflection theory (see Reiss et al. [6]). The analytical solution of (1) is given

by Timoshenko and Woinowsky-Krieger [7] provided the functions fix) and

g(x) are constants. In the general case we resort to some numerical tech-

niques. Usmani and Marsden [8] have analyzed a second order convergent

finite difference method for (1). Following this, Jain et al. [4] have developed

and analysed higher order methods. The problem (1) does not always have a

unique solution for all choices of fix) as is apparent from the example

ym - w*y - 0,       y(0) = y(l) = >>"(0) = y"(l) = 0

which has as its solution y(x) = C sin (trx) for arbitrary values of C. The

purpose of this note is to establish a sufficient condition that guarantees a

unique solution for (1).

2. A uniqueness theorem. We shall give an elementary proof of the follow-

ing theorem.
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Theorem 1. The boundary value problem (1) has a unique solution provided

inf f(x) = - n > -it4,   that is -f(x) < 17. (2)

We preface the proof of this theorem with the following lemmas.

Lemma 2. Ify(x) G C'[0, 1] andy(0) = y(l) = 0, then

ir2Cy2(x)dx < ([\y'(x)]2dx.
Jo Jo

Let C[0, 1] consist of all continuous functions on the interval / = [0, 1] and

define in this section only ||y|| = supx|y(x)|, x G I.

Lemma 3. Ify(0) = y(l) = 0 andy(x) G C[0, 1], then

M < °-5 jfVwj5dx
1/2

For the proofs of these lemmas the reader should consult Hardy et al. [2,

Theorem 256, p. 182] and Lees [5].

Lemma 4. For the differential system

Ly = g(x),      y(0) = y(l) = y"(0) = y"(l) = 0,

||y||<0.57r||g||/[,r4-4

Proof. The system

(i)       y"(x) = z(x),       ^(0)=y(l) = 0,

(ii)       z"(x) + f(x)y = g(x),       z(0) = z(l)=0 (3)

is equivalent to the differential system of the theorem. On multiplying (3.i) by

y(x) and integrating the result from 0 to 1, we find

- f\y')2dx= Çyzdx.

Now using the Cauchy-Schwartz inequality we obtain from the preceding

equation

/  (y'f dx <    / y2 dx \  z2 dx
Jo Jo •'0

1/2

On using Lemma 2, we derive from the preceding inequality

f(y')2dx
1/2

< —r
■'0

dx
1/2

In a similar manner, from (3.ii), we derive

Jn

1/2

dx <7TJ

[^-n]

(4)

(5)
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provided t/ satisfies (2). Now from (4) and (5) it follows that

f\y')2dx
. °

Lemma 4 now follows from (6) and Lemma 3.

Proof of Theorem 1. Assume that there exist two distinct functions u(x)

and v(x) satisfying (1). Then it is easily seen that <b(x) = u(x) - v(x) satisfies

L</> = 0,       <i>(0) = </>0) = <í>"(0) = <?>"(1) = 0. (7)

Now, from Lemma 4 and (7) it follows that ||c/>|| < 0, which proves \\<j>\\ = 0

and u(x) s v(x), x E I. This proves that the boundary value problem (1) has

at most one solution.

In order to prove that (1) indeed has a solution, we define functions y¡(x),

i = 1, . . . , 4, as solutions of the respective initial value problems.

(i) Lyx=g(x),      yx(0) = Ax, y[(0) = y'((0) = y'x"(0) = 0,

(ii) Ly2 = 0, y'2(0)=l, y2(0) = ^'(0) = y'{'(Q) - 0,

(iii) Ly3 = 0, ym = Bx, y3(0) = y'3(0) = y'y(0) = 0,

(iv) Ly4 = 0, y'4'(0) = l, y4(0) = y'4(0) = y'4\0) = 0.   (8)

From the continuity of fix) and g(x) we are assured that unique solutions of

these initial value problems exist on [0, 1]. Furthermore the function z(x) =

z(x, s, t) = yx + sy2 + y3 + ty4, s, t being scalars, satisfies the initial value

problem

Lz = g(x),       z(0) = Ax,       z'(0) = s,        z"(0) = Bx,       z'"(0) = t.

The function z(x) will be a solution of (1) provided s, t satisfy

sy2(l) + ty4(l) = A2-yx(l)-y3(l),

sy2(l) + ty'i(l) = B2- y'{(l) - y'i(l).

If A = y2(l)y'4(l) — y2(l)y4(l) =£ 0, a unique solution of the preceding linear

system can be found, say s*, t*, and the corresponding function z(s, s*, t*)

then is the unique solution of (1). However, if A = 0, then

y#)/yî(i, = y/n/yW) = P (constant).

We can assume that/? j= 0, because if p = 0, then>>2(l) = 0 and the solution

of

Ly2 = 0,       .y2(0) = y'{(tí) = y'2"(0) = y2( 1) = 0

from Taylor series has the property that y'2(0) = 0, contradicting the original

assumption that y'2(0) = 1. Similarly p cannot be unbounded. Thus it follows

that.y2(l)=/>y2'(l),/> < oo.

Now using the system (8.ii), and the Taylor series, we obtain

.V2(l)= I - i-4fiot)y2{a),       0<a<l,

>>2'(1)= -0.5/(^)^(^8),       0 <>f3 < 1. (9)

'/•¿
< 7T

\8\\

I«4-*]'
(6)
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On combining y2(l) = py2(l) with equations (9) we obtain

f(a)y2(a)-l2pf(ß)y2(ß) = 24,

for all fix) G C. In an attempt to determine y2(a) and y2(ß), we choose

fix) = 1 and/(x) = - 1, giving the system

y2(«) - 12py2( ß ) = 24,        -y2(«) 4- 12py2( ß ) = 24.

But this latter system in the unknowns y2(a) andy2(ß) is inconsistent. We

thus conclude that A cannot vanish and the proof of the Theorem 1 is

completed.

3. A discrete boundary value problem. Let N be a positive integer and

« = (N + I)'1. We define the grid points x„ = a + nh, « G {0, N + 1} u S

where S = (1, 2, . . . , N). We denote by $ the set of all real-valued functions

defined on {x„}, « G S. Clearly $ is a real linear space of dimension N. Also

let || w|| = [2¡hu2]x/2, where u¡ = u(x¡). Note that || ■ || defines the L2-norm of

a vector, a natural definition of a norm on vectors since this norm converges

to [Jl0u2(x) dx]x/2 as « ->0. We also have \\u\\ = Vh \\u\\2 where || • ||2 is the

Euclidean norm (see Isaacson and Keller [3]). For a given matrix A = (a¡j),

the matrix norm induced by the Euclidean vector norm we define the Hilbert

or spectral norm of a matrix by \\A\\2 = V~p where p is the largest eigenvalue

of A*A. Here the operation * denotes the conjugate transpose of a matrix.

We now discretize the problem (1) by the following finite difference scheme

(i)        -2y(x0) + 5y(x.) - 4y(x2) 4- y(x3)

= -«y(x0) + h*[-±yW(x0)+yW(xx)] 4- tx,

(iï)     8*y(xn) = «V4>(x„) + ¿«y6)(<o„),       « = 2, . . . , N - I,

Xn-2 < Hi   <Xn+2>

(iii)    y(xN_2) - 4y(xN_x) + 6y(xN) - 2y(xN+x)

= -hY(xN+x) + «4[y(4)(x„) -±hy*\xN+x)] 4- tN,     (10)

where /, = ^«^^(w,), /' = 1, N, x0 < w, < x3, x^.2 < coN < xN+x. Set Y =

( y„) where y„ is an approximation to y(x„), y(x) being the exact solution of

(1). As in [4], [8], we obtain, on neglecting the local truncation errors tn,

noting y(4) = - f(x)y + g(x) and y(x„) ^ y„,

P2Y= -h4DY+ C,       P~x>0, (11)

(see [8]) where the tridiagonal matrix P = (pu) is given by p„ = 2, p0 = - 1

for \i — j\ = 1, otherwise p0 = 0; D = diag(/J is a diagonal matrix and the

column vector C depends on g(x) and the boundary conditions. The matrix P

is symmetric and positive definite and it is known that its eigenvalues are

4 sin2(m7T«/2)j m G S. Thus the eigenvalues of P2 are

\„ = 16 sin4(w7r«/2),       m G S. (12)
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Lemma 5. tt4«4(1 - tt2«2/6) < X, < tt4«4.

The inequality follows from 0 - 03/6 < sin 0 < 0 for 0 < 0 < w/2 and

(1 — x)" > 1 — «x for small values of x. Also the eigenvalues satisfy

0 < A, < X2 < ■ • • < X„. (13)

Since P is symmetric, it is easy to see that

\\P-2\\2=i/K (14)

Lemma 6. Assume that fix) satisfies (2) and that «0 is such that

T,  < 7T4(1   -  *2h0/6). (15)

Furthermore if h < h0, and u, v G d> satisfy

P2u= -h4Du + C„       P2v= -h4Dv + C2,

then ||m - o|| < K(h0)\\Cx - C2||, where

K(h0) = «-4[t74(1 - 7T2«2/6) - ,]"'. (16)

Proof. From the hypothesis it follows

P2(u - v) = -h4D(u - v) + (C, - C2),

(u-v) = P~2[-h4D(u-v) + (Cx- C2)],

||" - »h < (1A,)[t)«4||" - o|a +|C, - C2||2],

by (2) and (14) or

(Xx-r,h4)\\u-v\\<\\Cx- C2

Now on using Lemma 5 and (15), the result of Lemma 6 follows.

Remark. If 17 = 0, the constant «0 < 0.77.

Lemma 7. If fix) satisfies (2) and if Y is a solution of (11), then

|| r|| <*(«,,)• || q. (n)

Proof. Put u = Y, C, = C, v = C2 = 0 in Lemma 6, then (17) follows.

Theorem 2. If fix) satisfies (2), then the discrete boundary value problem (11)

has a unique solution.

Proof. Clearly, Lemma 6 implies that (11) has at most one solution. Let

Ö = {u G 4>: ||u|| < AT«0)||C||}. Define a mapping T: u -» v by means of the

relation

P2v = -h4Du + C. (18)

Since P'x > 0, it follows that (18) has exactly one solution for a given u.
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Consider Tu = v and use (18) to deduce

H<[/AlH + liqi]A.
< [(h\K(h0) + 1)||C||]/[WV(1 - v2h2/6)]

<K(h0)\\C\\,

on using (16). This proves that T maps ß into itself. Let e > 0 be given, we

can choose 5(e)

8 =[>4(1 - 772^/6)]/t,,       n *0. (19)

Now if Tux = yx, Tu2 = y2, then

\\Tux-Tu2\\=\\yx-y2\\

= \\p-2(-h4Dux + C) - P~2(-h*Du2 + C)\\

< h\\\ux - u2\\/Xx < e,

provided \\ux — u2\\ < 8 given by (19) and Xx > w4/i4(l - ir2h2/6). This shows

that T is continuous on ß. Hence, by Brouwer's fixed point theorem [1], there

is a u E fi such that Tu = u, and this is clearly a solution of (18) and hence

of (11). This completes the proof of the theorem.

Note. For tj = 0, an obvious modification of the argument still proves the

preceding theorem.

4. An approximation theorem. In this concluding section we establish an a

posteriori bound. We note that the system of linear equations based on (10)

can be written as

p2y = -hADY + C+ T (20)

where Y = (y(xn)) E O and clearly

\\T\\<\h6M6 (21)

where M6 = ma\x\d(6)y/dx6\, 0 < x < 1. If we subtract (11) from (20), we

obtain an error equation, namely

P2E= -h4DE+ T (22)

where E = (en) E $ and e„ = y(xn) - y„.

Theorem 3. If fix) satisfies (2), then for h < h0:

\\E\\=0(h2).

Proof. From Lemma 7, it follows that

\\E\\<K(h0)\\T\\=O(h2)

using (16) and (22). In fact

\\E\\< ±M6h2[v\l - ir2h2/6) - V]-X.
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