A UNIQUENESS THEOREM FOR A BOUNDARY VALUE PROBLEM

RIAZ A. USMANI

ABSTRACT. In this paper it is proved that the two-point boundary value problem, namely $(d^{(4)}/dx^4 + f)y = g$, $y(0) - A_1 = y(1) - A_2 = y''(0) - B_1 = y''(1) - B_2 = 0$, has a unique solution provided $\inf_x f(x) = -\eta > -\pi^4$. The given boundary value problem is discretized by a finite difference scheme. This numerical approximation is proved to be a second order convergent process by establishing an error bound using the L_2 -norm of a vector.

1. Introduction. Consider the real two-point linear boundary problem

$$Ly \equiv [d^{(4)}/dx^4 + f(x)]y = g(x), \qquad 0 < x < 1,$$

$$y(0) = A_1, \quad y(1) = A_2, \quad y''(0) = B_1, \quad y''(1) = B_2,$$
 (1)

where the functions f(x) and $g(x) \in C[0, 1]$. A more general problem of the form

$$Ly = g(x), \quad y(a) = \overline{A}_1, \quad y(b) = \overline{A}_2, \quad y''(a) = \overline{B}_1, \quad y''(b) = \overline{B}_2$$

can always be transformed into (1) by means of a substitution of the form X = (x - a)/(b - a). Problems of the form (1) frequently occur in plate deflection theory (see Reiss et al. [6]). The analytical solution of (1) is given by Timoshenko and Woinowsky-Krieger [7] provided the functions f(x) and g(x) are constants. In the general case we resort to some numerical techniques. Usmani and Marsden [8] have analyzed a second order convergent finite difference method for (1). Following this, Jain et al. [4] have developed and analysed higher order methods. The problem (1) does not always have a unique solution for all choices of f(x) as is apparent from the example

$$y^{(4)} - \pi^4 y = 0,$$
 $y(0) = y(1) = y''(0) = y''(1) = 0$

which has as its solution $y(x) = C \sin(\pi x)$ for arbitrary values of C. The purpose of this note is to establish a sufficient condition that guarantees a unique solution for (1).

2. A uniqueness theorem. We shall give an elementary proof of the following theorem.

Received by the editors June 6, 1978.

AMS (MOS) subject classifications (1970). Primary 34B05; Secondary 65L10.

Key words and phrases. Brouwer's fixed point theorem, Euclidean and L_2 -norm of a vector, finite difference scheme, local truncation error, plate deflection theory, posteriori error bound, spectral norm of a matrix, two-point boundary value problem.

THEOREM 1. The boundary value problem (1) has a unique solution provided

$$\inf_{x} f(x) = -\eta > -\pi^4, \quad that is -f(x) < \eta. \tag{2}$$

We preface the proof of this theorem with the following lemmas.

LEMMA 2. If $y(x) \in C^{1}[0, 1]$ and y(0) = y(1) = 0, then

$$\pi^2 \int_0^1 y^2(x) \ dx \le \int_0^1 \left[\ y'(x) \right]^2 \ dx.$$

Let C[0, 1] consist of all continuous functions on the interval I = [0, 1] and define in this section only $||y|| = \sup_{x} |y(x)|, x \in I$.

LEMMA 3. If y(0) = y(1) = 0 and $y(x) \in C[0, 1]$, then

$$||y|| \le 0.5 \left[\int_0^1 [y'(x)]^2 dx \right]^{1/2}$$

For the proofs of these lemmas the reader should consult Hardy et al. [2, Theorem 256, p. 182] and Lees [5].

LEMMA 4. For the differential system

$$Ly = g(x),$$
 $y(0) = y(1) = y''(0) = y''(1) = 0,$
 $||y|| \le 0.5\pi ||g|| / [\pi^4 - \eta].$

PROOF. The system

(i)
$$y''(x) = z(x)$$
, $y(0) = y(1) = 0$,
(ii) $z''(x) + f(x)y = g(x)$, $z(0) = z(1) = 0$ (3)

is equivalent to the differential system of the theorem. On multiplying (3.i) by y(x) and integrating the result from 0 to 1, we find

$$-\int_0^1 (y')^2 dx = \int_0^1 yz dx.$$

Now using the Cauchy-Schwartz inequality we obtain from the preceding equation

$$\int_0^1 (y')^2 dx \le \left[\int_0^1 y^2 dx \right]^{1/2} \left[\int_0^1 z^2 dx \right]^{1/2}.$$

On using Lemma 2, we derive from the preceding inequality

$$\left[\int_0^1 (y')^2 dx\right]^{1/2} \le \frac{1}{\pi^2} \left[\int_0^1 (z')^2 dx\right]^{1/2}.$$
 (4)

In a similar manner, from (3.ii), we derive

$$\left[\int_{0}^{1} (z')^{2} dx\right]^{1/2} < \pi^{3} \frac{\|g\|}{\left[\pi^{4} - \eta\right]}$$
 (5)

provided η satisfies (2). Now from (4) and (5) it follows that

$$\left[\int_0^1 (y')^2 dx\right]^{1/2} \le \pi \frac{\|g\|}{\left[\pi^4 - \eta\right]}.$$
 (6)

Lemma 4 now follows from (6) and Lemma 3.

PROOF OF THEOREM 1. Assume that there exist two distinct functions u(x) and v(x) satisfying (1). Then it is easily seen that $\phi(x) = u(x) - v(x)$ satisfies

$$L\phi = 0, \qquad \phi(0) = \phi(1) = \phi''(0) = \phi''(1) = 0.$$
 (7)

Now, from Lemma 4 and (7) it follows that $\|\phi\| \le 0$, which proves $\|\phi\| \equiv 0$ and $u(x) \equiv v(x)$, $x \in I$. This proves that the boundary value problem (1) has at most one solution.

In order to prove that (1) indeed has a solution, we define functions $y_i(x)$, i = 1, ..., 4, as solutions of the respective initial value problems.

(i)
$$Ly_1 = g(x)$$
, $y_1(0) = A_1$, $y_1'(0) = y_1''(0) = y_1'''(0) = 0$,

(ii)
$$Ly_2 = 0$$
, $y_2'(0) = 1$, $y_2(0) = y_2''(0) = 0$,

(iii)
$$Ly_3 = 0$$
, $y_3''(0) = B_1$, $y_3(0) = y_3''(0) = y_3'''(0) = 0$,

(iv)
$$Ly_4 = 0$$
, $y_4'''(0) = 1$, $y_4(0) = y_4'(0) = y_4''(0) = 0$. (8)

From the continuity of f(x) and g(x) we are assured that unique solutions of these initial value problems exist on [0, 1]. Furthermore the function $z(x) \equiv z(x, s, t) = y_1 + sy_2 + y_3 + ty_4$, s, t being scalars, satisfies the initial value problem

$$Lz = g(x),$$
 $z(0) = A_1,$ $z'(0) = s,$ $z''(0) = B_1,$ $z'''(0) = t.$

The function z(x) will be a solution of (1) provided s, t satisfy

$$sy_2(1) + ty_4(1) = A_2 - y_1(1) - y_3(1),$$

 $sy_2''(1) + ty_4''(1) = B_2 - y_1''(1) - y_3''(1).$

If $\Delta = y_2(1)y_4''(1) - y_2''(1)y_4(1) \neq 0$, a unique solution of the preceding linear system can be found, say s^* , t^* , and the corresponding function $z(s, s^*, t^*)$ then is the unique solution of (1). However, if $\Delta = 0$, then

$$y_2(1)/y_2''(1) = y_4(1)/y_4''(1) = p$$
 (constant).

We can assume that $p \neq 0$, because if p = 0, then $y_2(1) = 0$ and the solution of

$$Ly_2 = 0$$
, $y_2(0) = y_2''(0) = y_2'''(0) = y_2(1) = 0$

from Taylor series has the property that $y_2'(0) = 0$, contradicting the original assumption that $y_2'(0) = 1$. Similarly p cannot be unbounded. Thus it follows that $y_2(1) = py_2''(1)$, $p < \infty$.

Now using the system (8.ii), and the Taylor series, we obtain

$$y_2(1) = 1 - \frac{1}{24} f(\alpha) y_2(\alpha), \qquad 0 < \alpha < 1,$$

$$y_2''(1) = -0.5 f(\beta) y_2(\beta), \qquad 0 < \beta < 1.$$
 (9)

On combining $y_2(1) = py_2''(1)$ with equations (9) we obtain

$$f(\alpha)y_2(\alpha) - 12pf(\beta)y_2(\beta) = 24,$$

for all $f(x) \in C$. In an attempt to determine $y_2(\alpha)$ and $y_2(\beta)$, we choose $f(x) \equiv 1$ and $f(x) \equiv -1$, giving the system

$$y_2(\alpha) - 12py_2(\beta) = 24, \quad -y_2(\alpha) + 12py_2(\beta) = 24.$$

But this latter system in the unknowns $y_2(\alpha)$ and $y_2(\beta)$ is inconsistent. We thus conclude that Δ cannot vanish and the proof of the Theorem 1 is completed.

3. A discrete boundary value problem. Let N be a positive integer and $h=(N+1)^{-1}$. We define the grid points $x_n=a+nh$, $n\in\{0,N+1\}\cup S$ where $S=(1,2,\ldots,N)$. We denote by Φ the set of all real-valued functions defined on $\{x_n\}$, $n\in S$. Clearly Φ is a real linear space of dimension N. Also let $\|u\|=[\sum_i hu_i^2]^{1/2}$, where $u_i\equiv u(x_i)$. Note that $\|\cdot\|$ defines the L_2 -norm of a vector, a natural definition of a norm on vectors since this norm converges to $[\int_0^1 u^2(x) \, dx]^{1/2}$ as $h\to 0$. We also have $\|u\|=\sqrt{h} \|u\|_2$ where $\|\cdot\|_2$ is the Euclidean norm (see Isaacson and Keller [3]). For a given matrix $A=(a_{ij})$, the matrix norm induced by the Euclidean vector norm we define the Hilbert or spectral norm of a matrix by $\|A\|_2 = \sqrt{\mu}$ where μ is the largest eigenvalue of A*A. Here the operation * denotes the conjugate transpose of a matrix.

We now discretize the problem (1) by the following finite difference scheme

(i)
$$-2y(x_0) + 5y(x_1) - 4y(x_2) + y(x_3)$$
$$= -h^2y''(x_0) + h^4 \left[-\frac{1}{12}y^{(4)}(x_0) + y^{(4)}(x_1) \right] + t_1,$$

(ii)
$$\delta^4 y(x_n) = h^4 y^{(4)}(x_n) + \frac{1}{6} h^6 y^{(6)}(\omega_n), \qquad n = 2, \dots, N-1,$$

 $x_{n-2} < \omega_n < x_{n+2},$

(iii)
$$y(x_{N-2}) - 4y(x_{N-1}) + 6y(x_N) - 2y(x_{N+1})$$

= $-h^2y''(x_{N+1}) + h^4 \left[y^{(4)}(x_N) - \frac{1}{12}h^4y^{(4)}(x_{N+1}) \right] + t_N$, (10)

where $t_i = \frac{59}{360}h^6y^{(6)}(\omega_i)$, $i = 1, N, x_0 < \omega_1 < x_3, x_{N-2} < \omega_N < x_{N+1}$. Set $Y = (y_n)$ where y_n is an approximation to $y(x_n)$, y(x) being the exact solution of (1). As in [4], [8], we obtain, on neglecting the local truncation errors t_n , noting $y^{(4)} = -f(x)y + g(x)$ and $y(x_n) \simeq y_n$,

$$P^{2}Y = -h^{4}DY + C, P^{-1} > 0, (11)$$

(see [8]) where the tridiagonal matrix $P = (p_{ij})$ is given by $p_{ii} = 2$, $p_{ij} = -1$ for |i - j| = 1, otherwise $p_{ij} = 0$; $D = \text{diag}(f_n)$ is a diagonal matrix and the column vector C depends on g(x) and the boundary conditions. The matrix P is symmetric and positive definite and it is known that its eigenvalues are $4 \sin^2(m\pi h/2)$, $m \in S$. Thus the eigenvalues of P^2 are

$$\lambda_m = 16 \sin^4(m\pi h/2), \qquad m \in S. \tag{12}$$

LEMMA 5. $\pi^4 h^4 (1 - \pi^2 h^2 / 6) \le \lambda_1 \le \pi^4 h^4$.

The inequality follows from $\theta - \theta^3/6 \le \sin \theta \le \theta$ for $0 < \theta < \pi/2$ and $(1-x)^n > 1 - nx$ for small values of x. Also the eigenvalues satisfy

$$0 < \lambda_1 < \lambda_2 < \cdots < \lambda_N. \tag{13}$$

Since P is symmetric, it is easy to see that

$$||P^{-2}||_2 = 1/\lambda_1. \tag{14}$$

LEMMA 6. Assume that f(x) satisfies (2) and that h_0 is such that

$$\eta < \pi^4 (1 - \pi^2 h_0 / 6). \tag{15}$$

Furthermore if $h < h_0$, and $u, v \in \Phi$ satisfy

$$P^{2}u = -h^{4}Du + C_{1}, \qquad P^{2}v = -h^{4}Dv + C_{2},$$

then $||u - v|| \le K(h_0)||C_1 - C_2||$, where

$$K(h_0) = h^{-4} \left[\pi^4 \left(1 - \pi^2 h_0^2 / 6 \right) - \eta \right]^{-1}. \tag{16}$$

PROOF. From the hypothesis it follows

$$P^{2}(u-v) = -h^{4}D(u-v) + (C_{1} - C_{2}),$$

$$(u-v) = P^{-2}[-h^{4}D(u-v) + (C_{1} - C_{2})],$$

$$\|u-v\|_{2} \le (1/\lambda_{1})[\eta h^{4}\|u-v\|_{2} + \|C_{1} - C_{2}\|_{2}],$$

by (2) and (14) or

$$(\lambda_1 - \eta h^4) \|u - v\| \leq \|C_1 - C_2\|.$$

Now on using Lemma 5 and (15), the result of Lemma 6 follows.

REMARK. If $\eta = 0$, the constant $h_0 < 0.77$.

LEMMA 7. If f(x) satisfies (2) and if Y is a solution of (11), then

$$||Y|| \le K(h_0) \cdot ||C||.$$
 (17)

PROOF. Put u = Y, $C_1 = C$, $v = C_2 = 0$ in Lemma 6, then (17) follows.

THEOREM 2. If f(x) satisfies (2), then the discrete boundary value problem (11) has a unique solution.

PROOF. Clearly, Lemma 6 implies that (11) has at most one solution. Let $\Omega = \{u \in \Phi: ||u|| \le K(h_0)||C||\}$. Define a mapping $T: u \to v$ by means of the relation

$$P^2v = -h^4Du + C. (18)$$

Since $P^{-1} > 0$, it follows that (18) has exactly one solution for a given u.

Consider Tu = v and use (18) to deduce

$$||v|| \le [h^4 \eta ||u|| + ||C||] / \lambda_1$$

$$\le [(h^4 \eta K(h_0) + 1) ||C||] / [\pi^4 h^4 (1 - \pi^2 h_0^2 / 6)]$$

$$\le K(h_0) ||C||,$$

on using (16). This proves that T maps Ω into itself. Let $\varepsilon > 0$ be given, we can choose $\delta(\varepsilon)$

$$\delta = \left[\varepsilon \pi^4 \left(1 - \pi^2 h_0^2 / 6 \right) \right] / \eta, \qquad \eta \neq 0.$$
 (19)

Now if $Tu_1 = y_1$, $Tu_2 = y_2$, then

$$||Tu_1 - Tu_2|| = ||y_1 - y_2||$$

$$= ||P^{-2}(-h^4Du_1 + C) - P^{-2}(-h^4Du_2 + C)||$$

$$\leq h^4\eta ||u_1 - u_2||/\lambda_1 < \varepsilon,$$

provided $||u_1 - u_2|| < \delta$ given by (19) and $\lambda_1 > \pi^4 h^4 (1 - \pi^2 h_0^2/6)$. This shows that T is continuous on Ω . Hence, by Brouwer's fixed point theorem [1], there is a $u \in \Omega$ such that Tu = u, and this is clearly a solution of (18) and hence of (11). This completes the proof of the theorem.

Note. For $\eta = 0$, an obvious modification of the argument still proves the preceding theorem.

4. An approximation theorem. In this concluding section we establish an a posteriori bound. We note that the system of linear equations based on (10) can be written as

$$P^2\tilde{Y} = -h^4D\tilde{Y} + C + T \tag{20}$$

where $\tilde{Y} = (y(x_n)) \in \Phi$ and clearly

$$||T|| \le \frac{1}{6}h^6M_6 \tag{21}$$

where $M_6 = \max_x |d^{(6)}y/dx^6|$, $0 \le x \le 1$. If we subtract (11) from (20), we obtain an error equation, namely

$$P^2E = -h^4DE + T \tag{22}$$

where $E = (e_n) \in \Phi$ and $e_n = y(x_n) - y_n$.

THEOREM 3. If f(x) satisfies (2), then for $h \le h_0$:

$$||E|| = O(h^2).$$

PROOF. From Lemma 7, it follows that

$$||E|| \le K(h_0)||T|| = O(h^2)$$

using (16) and (22). In fact

$$||E|| \le \frac{1}{6} M_6 h^2 [\pi^4 (1 - \pi^2 h_0^2 / 6) - \eta]^{-1}.$$

ACKNOWLEDGEMENT. The author acknowledges the National Research Council of Canada's financial support.

REFERENCES

- 1. N. Dunford and J. T. Schwartz, *Linear operators*. I. General theory, Interscience, New York, 1958.
- 2. G. H. Hardy, J. E. Littlewood and G. Polya, *Inequalities*, Cambridge Univ. Press, London and New York, 1952.
 - 3. E. Isaacson and H. B. Keller, Analysis of numerical methods, Wiley, New York, 1966.
- 4. M. K. Jain, S. R. K. Iyengar and J. S. V. Saldanha, Numerical integration of a fourth order ordinary differential equation, J. Engrg. Math. 11 (1977), 373-380.
- 5. M. Lees, Discrete methods for nonlinear two-point boundary value problems, Numerical Solutions of Partial Differential Equations (Proc. Sympos. Univ. Maryland, 1965), Academic Press, New York, 1966, pp. 59–72.
- 6. E. L. Reiss, A. J. Callegari and D. S. Ahluwalia, Ordinary differential equations with applications, Holt, Rinehart and Winston, New York, 1976.
- 7. S. Timoshenko and S. Woinowsky-Krieger, *Theory of plates and shells*, McGraw-Hill, New York, 1959.
- 8. R. A. Usmani and M. J. Marsden, Numerical solution of some ordinary differential equations occurring in plate deflection theory, J. Engrg. Math. 9 (1975), 1-10.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MANITOBA, WINNIPEG, MANITOBA, CANADA R3T 2N2