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INTEGRALS OF CERTAIN UNrVALENT FUNCTIONS

RAM SINGH AND SUNDER SINGH

Abstract. In this paper we study integrals of certain univalent functions in

the unit disc E = [z: \z\ < 1} and extend some well-known results of

Libera.

Introduction. Let A denote the class of functions

00

f(z) = 74-2 anz"
n = 2

which are regular in the unit disc E = {z: |z|<l}. We denote by S the

subclass of univalent functions in A and by C, S* and K the subclasses of S

whose members are close-to-convex, starlike (with respect to the origin) and

convex in E, respectively. A function / G A is said to be starlike of order a,

a < 1, in F if and only if

Re^>«,       zGE. (1)

Similarly,/ G A is said to be convex of order a, a < 1, in F if and only if

Re{l+^}>«,       *€E£. (2)

We shall denote by S*(a) and K(a) the subclasses of A whose members

satisfy (1) and (2), respectively. It is known that for 0 < a < 1, S*(a) c S*,

K(a) c K and that S*(0) = S*, K(0) = K.

Following Ruscheweyh [3] we denote by Kn, n G NQ = {0, 1, . . . ), the

subclass of A whose members satisfy the condition

Re((^Ö>^I,       zGE. (3)
\(z"-xf(z)Yn)¡ 2

It is readily seen that A:0 = S*(l/2) and Kx = K.

As observed by Ruscheweyh, / G K„ if and only if
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where

D"f(z) =- *f(z).
A }      (l-z)n+x      V '

(Here '*' stands for the Hadamard product/convolution of two regular

functions.)

In [3] Ruscheweyh proved that for each n E N0, Kn+X c K^. Since K0 =

S*(l/2), Ruscheweyh's result implies that for each n E N0, K„ is a subclass of

S*.

We denote by R„, n E N0, the subclass of A whose members are char-

acterized by the condition

_   Í Dn+Xf(z) ) n

It follows immediately that R0 s S* and that for each n > 1, Rn c K„. Thus,

for each n E N0, R„ is a subclass of S*. One can readily prove that

R„+x C R„ for every n E N0. These inclusion relations and the fact that

z/(l - xz) belongs to Rn if and only if \x\ < l/n, along with a result of

Ruscheweyh [3, Corollary 2, Theorem 4] imply that n „<en0R„ = {z}-

The following interesting results are due to Libera [2].

Theorem A. Iff E S*, then so does the function F, defined by

F(z) = ^Cf(t)dt. (6)
z Jo

Theorem B. /// E K, then so does the function F, defined by (6).

Theorem C. Iff E C, then so does the function F, defined by (6).

In this paper, along with other things, we prove that the above-mentioned

results of Libera continue to hold for much wider classes than the ones for

which he has proved them.

Theorem 1. Let f E A and for a given n E N0 satisfy the condition

Let F be defined by (6). Then F E Rn.

Proof. The condition (7) when expressed in terms of F reads as follows:

Re
(n + 2)Dn+2F(z)/Dn + lF(z) 2n — 1 .        _.    .„.

>2(n-TT)        ('G£)'(8)(« + 1) - (n - l)D"F(z)/Dn+xF(z)

where we have made use of the identity

z(DmF(z))' = (m+ l)Dm + 1F(z) - mDmF(z)   for every m E N0.   (9)
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We have to prove that (8) implies the inequality

«ReD::i_Fsz?>
« 4- 1

Define w in E by

G(z) =

D"F(z)

Dn+xF(z)

DnF(z)        «4-1   '   « 4- 1  1 4- w(z)

(« 4- 1) 4- (n - l)w(z)

(zGE).

1      1 - w(z)

(n + l)(l + w(z))     ■ (10)

Evidently w(0) = 0. Differentiating (10) logarithmically and simplifying, we

obtain

(« 4- 2)Dn+2F(z)/Dn+xF(z) - n

(n 4- 1) - (« - l)Z>"F(z)/Z>n + 1F(z)

(« 4- 1) 4- (« - l)w(z)

(n + 1)(1 + w(z))

1        zw'(z)       w(z)

« 4- 1      w(z)     1 4- w(z)
(H)

If Re G(z0) = n/(n 4- 1) for a certain z0 belonging to E and Re G(z) >

n/(n 4- I) for |z| < |z0|, then |w(z)| < |w(z0)| = 1 for |z| < |z0| and of course

w(z0) + -1.

Applying Jack's lemma [1] to w(z) at the point z0 and letting z0w'(z¿)/w(z0)

= k, so that k > 1, we obtain from (11)

Re
(« 4- 2)/Jn+2F(z0)/Z?"+1F(z0) - «

(« 4- 1) - (« - l)D»F(z0)/Dn + xF(z0)

2« - 1

«4-1      2(« 4- 1)      2(« 4- 1) '

which contradicts (8). This proves that Re G(z) > n/(n + 1) in E and hence

F G Rn. This completes the proof of Theorem 1.

Putting n = 0 and n = 1 in Theorem 1, we obtain the following interesting

results which assert that Theorems A and B of Libera hold under much

weaker assumptions.

Corollary A. /// is starlike of order -1/2, that is, iff G S*(-l/2), then

the function F, defined by (6), belongs to S*.

Corollary B. If fis convex of order -1/2, that is, iff G K(-l/2), then the

function F, defined by (6), belongs to K.

It is well known that each / G S is convex in the disc |z| < 2 — V3 and

hence, from Theorem B, it follows that the Libera transforms (2/z)Jz0f(t)dt of

members of S map the disc |z| < r0, r0 > 2 — V3~, onto convex domains.

However, in view of Corollary B, we can strengthen this result.
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Corollary B'. If f E S, then the function F defined by (6) maps \z\ < r„

rx > 4 — YÏ3 = 0.394 . . . , onto a convex domain.

Proof. It is well known that for/ G S, we have

*/"(*)

/'(*)        1 - r2

from which we deduce that

(1*1 -'<!).
1-r2

<>+m-\
in \z\ <rx, where rx = 4 - VÏ3 , is the smallest positive root of the equation

r2 — 8r + 3 = 0. Corollary B' now follows from Corollary B.

The results of Corollaries A and B were orally communicated to the

authors by Professors St. Ruscheweyh and V. Singh.

Our next result shows that Theorem C of Libera holds under much weaker

hypotheses.

Corollary C. Let f E A satisfy the condition

Re{f'(z)/g'(z)}>0   (zEE) (12)

where g is any member of K(-1 /2). Then the function F, defined by (6), is in C.

Proof. Since g E K(-l/2), from Corollary B it follows that

G(z) = - f Zg(t) dt E K.
z J0

From the hypothesis, we have

(zF"(z) + 2F'(z)]      j^fjz)
Rel zG"(z) + 2G'(z) } - Reg'(z) >0       {Z G E)- (13)

We shall prove that F(z) is close-to-convex with respect to the convex

function G(z), that is,

Re|^>0       (*££)- <14>

To prove (14), put

F'(z) = I - w(z)

G'(z)      1 + w(z) " K   '

The function w(z) defined in this way is clearly regular in E, w(0) = 0 and

w(z) =£ -1 in E. The desired result would follow if we prove that \w(z)\ < 1 in

E.

From (15), we at once obtain

zF"(z) + 2F'(z) _ 1 - w(z) 2zw'(z)    I zG"(z)       V1

zG"(z) + 2G'(z)      l + w(z)      (l + w(z))2\  G'(z) ]'W>

Let us assume that \w(z)\ <f 1 in E. Then, by Jack's lemma, there exists a
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point z0 in E such that z0w'(z0) = kw(z0), with |w(z0)| = 1 and k > 1. Putting

z = zQ and w(z0) = eie, 0 < 0 < 2tt, in (16), we obtain

z0F"(z0) 4- 2F'(z0)       1 - e» 2kek

G\z0)z0G"(z0) + 2G'(z0)      l + e»      (1 + g»f

Since Re(l - ei9)/(l 4- e») = 0, kew/(l 4- e'9)2 is real and positive and

Re((zG"(z)/G'(z)) 4- 1) > 0 in E, from the last relation a contradiction to

our hypothesis (13) would follow. We must therefore have |w(z)| < 1 in E

and Corollary C is established.

Theorem 2. Iff G R„, then the function F, defined by

F(z) = ^ft"-Xf(t)dt,
z      J0

belongs to Rn+X.

Proof. From the definition of F, we have

(« 4- l)DJ(z) = D"(nF(z) 4- zF'(z))

= nD"F(z) + z(D"F(z))'

= (« 4- l)Dn+xF(z)   (using (9)).

Similarly (« 4- l)D"+xf(z) = (« 4- 2)Dn+2F(z) - Dn+lF(z). From these rela-

tions and the fact that/ G Rn, we conclude that

Re Í (n 4- 2)D»+2F(z) - D» + xF(z) } = Rg D^(z) n

\ (n + l)D"+xF(z) J DJ(z)        « 4- 1     v >

from which it follows that

_   Dn+2F(z)      «4-1
Re-—*-£ >-        (z G E),

Dn+xF(z)      n + 2        v "

and therefore F G Rn+X.

Remark. One can show that Theorem 2 remains true on replacing Rn by Kn

and R„+x by Kn+X in the hypothesis and the conclusion, respectively.

The authors are grateful to the referee for his suggestions which greatly

helped in presenting this paper in a compact form.
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