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GENERIC PROPERTIES OF CONTRACTION SEMIGROUPS
AND FLXED POINTS OF NONEXPANSrVE OPERATORS

F. S. DE BLASI AND J. MYJAK

Abstract. Let ñ be a nonempty, closed, bounded and starshaped subset of

a Banach space X. It is shown that most (in the Baire category sense)

differential equations «' + Au — 0 do have a unique asymptotic equilibrium

point. Here A : Ü -» X is supposed to be a nonlinear, continuous, bounded

and accretive operator satisfying the Nagumo boundary condition. An

application to the fixed point theory of nonexpansive operators F: il -» X

satisfying F(dQ) c ß is given.

1. Introduction and main result. Denote by X a real Banach space with

norm || • ||, by X* the dual space of X, and by J: X^*2X* the duality

mapping which is defined by

J(x) = (x* G X*\x*(x) = ||x||2 - ||x*||2}.

For each x and y in X we put

<x, y>+ = sup{y*(x)|y* G J(y)},

<x,y>_ =inf{y*(x)\y*GJ(y)}.

Let ß be a nonempty closed bounded and starshaped subset of X of

positive diameter L. For x G X, set

¿(x,ß) = inf{||x-y|||y GO}.

Denote by 911 the set of all (not necessarily linear) continuous operators A :

ß -» X which are bounded, supa||y4x|| < 4- oo, which are accretive, that is

(Ax — Ay, x — y}_ > 0 for all x, y G ß, and which satisfy the Nagumo

boundary condition [13], that is

lim h-xd(x - hAx,Q) = 0
A->0+

for each x G ß.

911 is made into a complete metric space by defining [12, p. 246]

p(A, B) = sup{px - Bx\\\x G ß},       A, B G 91t.

If ß is convex, 9H is a convex cone.

Let 9L be the subset of all A G 9IL which are strongly accretive, that is

(Ax - Ay, x - y>_ > qA\\x - y\\2
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for all x, y E il (qA > 0). It is easy to see that 91 is dense in 911. In fact, if

A E 911, e > 0, and z E ß is such that for any x E ß the line segment

ax + (1 — a)z, 0 < a < 1, is contained in ß, then the operator B: ß -» À",

defined by

Bx = Ax + (2L)~xe(x - z),

is in 91 and satisfies p(A,B) <e. Clearly B is continuous, bounded and

strongly accretive. In addition, if hq < 1 (h > 0, q = (2L)_1e), we have

d(x - hBx, ß) = d(x - hAx - hq(x - z) - z + z, ß)

= (l-hq)d^x-z-T^Ax,f^)j

from which, since ß — z is starshaped with respect to the origin, we obtain

d(x - hBx, ß) < (1 - hq)dix - z -      *     Ax, ß - z\.

Dividing both sides of the latter inequality by h > 0 and letting h -» 0 we

have that B satisfies the Nagumo boundary condition, and so B E 91.

For A E 9H and x E ß consider the Cauchy problem

u' + Au = 0,       k(0) = x (1)

(where the prime is, as usual, differentiation with respect to t). By a solution of

(1) we mean any continuously differentiable function SA(-)x: [0, + oo)-»ß

satisfying (1) for all t > 0. The following theorems are due to Martin [11] and

Vidossich [16], respectively.

Theorem I. For each A E 911 and each x E ß, the problem (1) has a unique

solution.

Let A E 91L. A point to^ G ß, such that for every x E ß we have

lim,^^.^ S(t)x = uA, is called an asymptotic equilibrium of j4.

Theorem II. ¿'ac/i ^4 E 91 Aas a unique asymptotic equilibrium.

For each /l E 9H, the family of maps SA(t): x -» 5^(0* is a continuous

one-parameter semigroup of nonexpansive transformations of ß into itself. By

Theorem II, each A E 91 has a unique asymptotic equilibrium. This is no

longer true, in general, whenever A E 911. As a simple example, the map

A(x,y) = (-y, x), restricted to the unit ball of R2, has no asymptotic

equilibrium. However such a situation is to be considered quite exceptional in

view of the following.

Theorem 1. Let 91^ be the subset of all those A E 91L which have a unique

asymptotic equilibrium uA. Then 91Lg is a residual set in 91L.

From Theorem 1 we obtain immediately:

Corollary 1. 77ie subset of all those A E 9H such that A _1(0) consists of a

unique point is a residual set in 911.
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For related results on the existence of zeros of accretive operators, see [4],

[10], [14], [16].

Corollary 2. The subset of all those A G 91L such that u' + Au = 0 has at

least one nonconstant periodic solution or at least two (different) constant

solutions is of Baire first category in 91t,.

2. Application to fixed point theory. Theorem 1 can be applied to the fixed

point theory of nonexpansive operators. In this section we assume that ß is

also convex. Let 'S = {F: Ü—>X\F nonexpansive, F(8ß) c ß}. Here 9ß

denotes the boundary of ß. 'S is made into a (complete) metric space if we

define

o(F,G) = sup{||Fx - Gx|||x G ß}   (F, G G <S~).

Observe that 'S is convex.

The following theorem shows that certain recent extensions [5], [9] of the

classical Browder-Gödhe-Kirk fixed point theorem [1], [6], [8] obtained within

the framework of spaces with normal structure, still remain valid for most

mappings in a general Banach space.

Theorem 2. Let % be the subset of all F G 'S which have a unique fixed

point. Then % is a residual set in 'S.

This theorem generalizes a theorem (proved by Vidossich [16] by a quite

different technique) ensuring that most nonexpansive mappings from ß into

itself have a unique fixed point. A result of constructive type stating that, for

most nonexpansive self-mappings on ß the sequence of successive approxima-

tions actually does converge, is proved in [2]. We wonder whether a similar

constructive result could be obtained for maps F G Sr. (A partial answer is

furnished by Theorem 3.)

However the theorem of [2] has a counterpart in the theory of ordinary

differential equations in an infinite dimensional Banach space. In fact it is

proved in [3] that: In the Banach space â of all continuous and bounded

vector fields/: [0, 1] X Ur -» X where Ur = {x G X\ \\x - x0|| < r) (r > 0),

with the supremum norm, the subset of all / G & such that the Peano-Picard

successive approximations for «' = fit, u), u(0) = x0 converge, is a residual

set in (£.

Theorem 3. Suppose that X is a Hilbert space. For y G X let Py be the

projection of y on the set ß c X. Let % be the subset of all F G 'S such that

the sequence of the successive approximations {(PF)nx) converges to the unique

fixed point of F, for every starting point x G ß. 77te« 3, is a residual set in 'S.

3. Proofs. Let % be a metric space. We denote by V(h, S) the open ball in

% with center h and positive radius 5.
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Proof of Theorem 1. Claim 1. Let B E 91 and e > 0 be given. Then there

exists SB(e) > 0 such that for each A E V(B, 8B(e)) we have

\\SB(t)x- SA(t)x\\<e

far every x EÎÎ and all t > 0.

Choose 8B(e) satisfying 0 < 8B(e) < e2qB/L where qB > 0 corresponds to

B E 91 and L > 0 is the diameter of ß. Let A E V(B, 8B(e)), and let x E ß

be arbitrary. Using Kato's lemma [7], for almost all / > 0 we have

j-t \\\SB(t)x - SA(t)xf

= i-BSB(t)x + ASA(t)x, SB(t)x - SA(t)x)+

= (-BSB(t)x + BSA(t)x - BSA(t)x + ASA(t)x, SB(t)x - SA(t)x) +

< <-BSB(t)x + BSA(t)x, SB(t)x - SA(t)x) +

+ \\BsA(t)x - ^(0*|N|s,(0* - ^(0*||

< -(BSB(t)x - BSA(t)x, SB(t)x - SA(t)x}_ +8B(e)L

< -q¡^SB(t)x - SA(t)x\\2 + 8B(e)L.

Solving this differential inequality and noting that SA(0)x = SB(0)x = x,

furnishes \\SB(t)x — SA(t)x\\ < e for all t > 0, and Claim 1 is true.

Claim 2. We have

00

91c. = n   U  k(*. «,(!)) <=%,.
n=l     B6 5S.        V \n/I

Let A E 911,,. Then, there exists a sequence {Bn} c 91 such that A E

V(Bn, 8B(l/n)) for n = 1, 2, . . . , and so

\\SA(t)x- SBn(t)x\\< l/n

for all t > 0, «=1,2,.... The corresponding sequence of asymptotic

equilibria {<¿BJ is Cauchy. For, given e > 0, if n, m > 4/e and r is

sufficiently large we have

K - <*bJ < K - SB¡¡(t)x\\ + \\SBn(t)x - SA(t)x\\

+ \\SA(t)x -  ̂ (0*1 +1^(0* - «ml
elle

<-: + - + — + -r<e.
4      n      m     4

Let limn_+00 uB = u. Let x E ß and let SA(-)x be the corresponding solu-

tion of (1). Since for n and / large enough we have

11^(0* - «|| < 11^(0* - ^(0*1 + 11^(0* - WjlI + IK - w||
1       e      e

«      3      3

if follows that lim(_,+00 SA(t)x = w. This shows that uA = w is an asymptotic

equilibrium of A. The uniqueness of uA is obvious, hence A E 91Lq.
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Clearly 91t„ is dense in 91t since 9t c 91tv Thus to complete the proof it

suffices to observe that 91t.,,, as a dense Gs-set in the Baire space 91t, is

residual. The same is true a fortiori for 91^, since 91tn D 91t„.

Corollary 3. Let £ be a (nonempty) closed subspace of 91t. Let £ n 9t be

dense in £. Then the subset Eg of all A G £, such that ^"'(0) consists of a

unique point, is a residual set in £.

Proof. By the preceding argument we prove that

£.= n   u   WW^))
n=l    Be£n9t      v V"//

is a residual set in £. Here V stands for an open ball in £. The statement

follows from the inclusion £% c £q.

Proof of Theorem 2. The function A: F-» / - F, / the identity, is a

bijection of 'S onto 'S = A(*ÍF). For each F G 5", A(F) is continuous,

bounded and accretive; furthermore the fact that F(9ß) c ß implies that

A(F) satisfies the Nagumo condition. Thus 'S G 91t (if, of course, in the

definition of 9lt we assume ß to be convex). By the isometry between 'S and

ÍF we deduce that 'S is a closed subspace of 91t. When G is a strict

contraction, A(G) is strongly accretive, hence A(G) G ^ n 9t and the latter

set is dense in 'S since strict contractions are dense in 'S. By Corollary 3 the

subset % of all A(F) with a unique zero is residual in 9. By the isometry,

% = A'x(%) is residual in 'S and, since any F G % has a unique fixed point,

the proof is complete.

Proof of Theorem 3. Let § be the subset of all strict contractions G G 'S".

When G E @ the composition PG is a strict contraction (with the same

Lipschitz constant of G, say qG) and maps ß into itself, hence it has a unique

fixed point xG. The boundary condition G(9ß) c ß implies that xG is also the

(unique) fixed point of G. For fixed x0 G ß and F6Í the map Gax = ax0

4- (1 — a)Fx, 0 < a < 1, x G ß is in § and when a-»0we have G0 -* F.

This proves that § is dense in 'S. Let G G @ and e > 0 be arbitrary. Take

0 < 0(e) < (1 - qG)e. For any F G V(G, ôG(e)) and any x G ß, we have that

\\(PG)2x-(PF)2x\\

<\\(PG)(PG)x - (PG)(PF)x\\ + \\(PG)(PF)x - (PF)(PF)x\\

< <7rA(e) + M«) = (1 + qG)8G(e),

and   easily,   using   induction,   that   \\(PG)"x - (FF)"x|| < e  for  all   « =

1,2,.... Then the set

*,- ñ u v(g,ög(1))
« = i   ces     V \nJJ

is residual in 'S and, as in Claim 2, it is proved that for each FEf, and for

each x G ß the sequence {(PF)"x) converges to a limit xF. Since F(9ß) c ß
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we have the result that FxF = xF. The uniqueness is trivial. Since 'S + EC3X,

the proof is complete.

Simple examples show (even in the finite dimensional case) that ÍFnÍF, can

be nonempty.

4. Further results. The following two theorems are concerned with the

continuous dependence of the asymptotic equilibria, or fixed points, upon the

data. The proofs are omitted since they run as for Theorem 2 of [3].

Theorem 4. There exists a Baire first category set % c 911 such that the

map <p: 911 \ % -» ß given by <p(A) = uA is well defined and continuous.

For F E *§ denote by xF the fixed point of F, if it exists and is unique.

Theorem 5. There exists a Baire first category set <? c 'S such that the map

i//: "f \ 9 -» ß given by $(F) = xF is well defined and continuous.

In the next theorem we consider the structure of the subset 911, of the

convex cone 91L.

Theorem 6. 911 „ U {0} is a convex cone in 91L.

Proof. Observe that for each e > 0 and B E 91 the statement of Claim 1

is certainly satisfied if we take 8B(e) = e2qB/2L.

It is easy to see that if B E 91 with constant qB, then aB E 91 with

constant aqB (a > 0) and so, if we choose 8aB(e) = a8B(e), the conclusion of

Claim 1 holds.

Let A E 911, and a > 0. There is a sequence {Bn} c 91 such that A E

V(B„, 8B(l/n)), n = 1, 2, ... . Thus

aA E v(aBn, a8Bn[\)) = v(aBn, Kb,[\)\       « = 1, 2, ...,

implies that aA E 911,. The case a = 0 is trivial.

An easy calculation shows that if B, B E 91 with constants qB, q¿,

respectively, and a, ß > 0, a + ß = 1, then aB + ßB E 91 with constant

QaB + ßB = aaB + ßlB-

From this we have that the conclusion of Claim 1 is satisfied for

öaB+ße(e) = «M«) + ««O-

Let A, Ä E 91t„ and a, ß > 0, a + ß = 1. There are sequences {Bn},

[Bn) c 91 such that A E V(B„, 8B(l/n)), Ä E V(Bn, 8È(l/n)), n =

1,2.Then

aA + ßÄ Ev(aBn,a8B{^ + v(ßB„, ß8B^)j}

- V(aBn + ßB„, 8aB¡>+fil(l/n)),       n = 1, 2, ... ,

implies that aA + ßÄ E 91t,. This completes the proof.
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