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A NOTE ON INVARIANT SUBSPACES

FOR FINITE MAXIMAL SUBDIAGONAL ALGEBRAS

KICHI-SUKE SAITO

Abstract. Let M be a von Neumann algebra with a faithful, normal, tra-

cial state t and H °° be a finite, maximal, subdiagonal algebra of M. Every

left- (or right-) invariant subspace with respect to H °° in the noncommuta-

tive Lebesgue space LP(M, t), 1 < p < oo, is the closure of the space of

bounded elements it contains.

1. Introduction. Let M be a von Neumann algebra with a faithful, normal,

tracial state t and let F°° be a finite, maximal, subdiagonal algebra in M.

Such algebras were defined and first studied by Arveson [1] as noncommuta-

tive analogues of weak-*Dirichlet algebras. Since the introduction of these

algebras, a number of authors have investigated the structure of the invariant

subspaces for H°° acting on the noncommutative Lebesgue space LP(M, t)

(see, in particular, [3], [5], [6], [7] and [8]). In [6], we showed that, if Wl is a

left- (or right-) invariant subspace of LP(M, r), 1 < p < oo, then 97i n M

contains elements different from zero. In this note, we shall show that, if 9JÎ is

a left- (or right-) invariant subspace of LP(M, t), 1 < p < oo, then 97Î is the

L^-norm closure of 5DÎ n M. The method is based on a factorization theorem,

i.e. if k is in M with (possibly unbounded) inverse lying in L2(M, r), then

there are unitary operators ux, u2 in M and operators ax, a2 in Hx with

inverses lying in H2 such that k = uxax = a2u2.

2. Let M be a von Neumann algebra with a faithful, normal, tracial state t.

We shall denote the noncommutative Lebesgue spaces associated with M and

t by LP(M, t), 1 < p < oo ([2], [9]). As is customary, M will be identified

with Lco(M, t). The closure of a subset 5 of LP(M, t) in the L^-norm

11*11, = <\x\p)l/p win be denoted by [S]p.

Definition. Let H °° be a o-weakly closed subalgebra of M containing the

identity operator 1 and let i> be a faithful, normal expectation from M onto

D = Hx n H°°' (Hx' = (x*: x G Hx}). Then Hx \s called a finite,

maximal, subdiagonal algebra in M with respect to $ and t in case the

following conditions are satisfied: (1) H°° 4- Hx' is o-weakly dense in M; (2)

í>(xy) = d>(x)d>(y), for all x, y G //°°; (3) H°° is maximal among those

subalgebras of M satisfying (1) and (2); and (4)t°$ = t.

For 1 < p < oo, the closure of H°° in LP(M, t) is denoted by Hp and the
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closure of H£> = {x E HK; ®(x) = 0) is denoted by Hp.

In [6], McAsey, Muhly and the author proved that if A: is in M with inverse

lying in L2(M, t), then there are unitary operators «,, u2 in M and operators

ax, a2 in Hx such that k = uxax = a2u2. We shall show that in fact it is

possible to choose ax and a2 to have inverses lying in H2.

Proposition 1 (cf. [6, Proposition 1.2]). If k E M and k~x E L2(M, r),

then there are unitary operators ux, u2E M and operators ax, a2 E H™ such

that k = uxax = a2«2 and axx, a2x E H2.

To Proposition 1, we need the following lemma.

Lemma 1. Suppose that k E M and k~x E L2(M, t). Then

(i)kE[kH™]2.

(ii) Let 7) be the projection of k on [kH™]2 and f = k — r\. Then there exists

a unitary operator u in M such that u$ E[D]2, [uÇD]2 = [D]2 and uk E H°°.

Proof. See proof of [6, Proposition 1.2].

Proof of Proposition 1. Keep the notations in Lemma 1. Put a = uk. To

prove Proposition 1, it is sufficient to prove that a~x E H2. If P is the

orthogonal projection of L2(M, t) onto [D]2, then the restriction of P to M

equals í>. Since 7j E [kH™]2, there exists a sequence {b„}™=x in i/0°° such that

lim||T, - kbn\\2 = 0. Then we have wf = u(k — tj) = lim(«A: — ukbn) = lim(a

- abn). Since wf E [D]2 and abn E #0°°, ttf = PuÇ = lim P(a - abn) =

lim $(a - abn) = *(a). It is immediate from this that wf E D. Since [uÇD]2

— [D\i by Lemma 1 and a~' = k~lu*, we have for every d E D,

T(®(a)P(a-x)uÇd) = T(P(a-l)uSdQ(a)) = T(a~lu$d<!>(a))

= T(k~x$d<i>(a)) = limT(k-x(k - kbn)d^(a))

= limT((l - bn)d<b(a)) = r(d$(a)) = j(u^d).

Consequently we have ®(a)P(a~x) = 1 and so a-1 = k~x$P(a~'). For every

d E D and every x E //0°°, we have r(k~xÇdx) = lim r(k~l(k - kb„)dx) =

lim t((1 - bn) dx) = 0. Since P(a~x) G [D]2, there exists a sequence (¿X-i

in D such that lim\\dn - P(a~x)\\2 = 0. Hence, for every x E H™, r(a~xx) =

T(k-x$P(a~x)x) = lim r(k-^dnx) = 0. Since L2(M, t) = H2 0 i/02* (^02* =

[x*: x E //q2}) by [1, p. 583] or [6, Proposition 1.1], we have a~x E H2. This

completes the proof.    Q.E.D.

3. In this section, we collect several important facts about Hp and //§.

Lemma 2,/i'n L2(M, t) = H2 and H^ n L2(M, r) = H¡.

Proof. Since L2(Af, r) = H2 ® H¿' = //02 0 if2*, this lemma is trivial.

Lemma 3. Hx = {x E Lx(M, t): r(xy) = 0 for ally E H0~}.
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Proof. That Hx is included in the set indicated above is clear. Conversely

let x G LX(M, t) satisfy T(xy) = 0, y G #0°°. Let x = |x*|t> be the polar

decomposition of x. Let / be the function on [0, oo) defined by the formula

fit) = 1, 0 < t < 1, fit) = l/t, t > 1, and define k to be /(|x*|1/2) through

the functional calculus. Then note that k G M and k ~x G L2(M, t). By

Proposition 1, we may choose a unitary operator u in M and an operator

a G HM such that k = ua and a~x G H2. Then ax is a nonzero element in

L2(M, t). Since L2(M, t) = H2 © Hf, we have ax G H2 and so x = a~xax

G H2H2 G Hx. This completes the proof.

Since ||$(x)||, < ||x||, for any x in M, $ extends uniquely to a projection

of norm one of LX(M, r) onto [£>], and we denote this extension of 0 to

LX(M, t) by $ too. Then we have the following lemma.

Lemma 4.

H¿ = (x G LX(M, t): r(xy) = 0 for all y G H00}

= {x G Hx:®(x) = 0}.

Proof. The inclusion H¿ ç {x G LX(M, t): t(xv) = 0 for ally G H°°) is

clear. Now we consider any x G LX(M, r) such that T(xy) = 0, y G H°°.

Since D c H°°, we have r(xy) = r(d>(x)y) = 0,y G Z), and so d>(x) = 0. By

Lemma 3, x G H1. Next we suppose x G Hx satisfies the equation i»(x) = 0.

Then there exist x„ G Hx such that ||x„ - x||, -* 0. Note that ||x„ - $(x„) -

x||, -»0 and xn - 4>(xn) G //0°°. It follows that x G H¿. This completes the

proof.

Proposition 2. Let 1 < p < oo.

(P'n Z/(A/, t) = H" andHx n ¿/(M, t) = //^.

(2) Hp = {x G ¿''(Af, t): T(xy) = 0/or a//y G #0°°}.

(3) ^o* = {x G Lp(M, t): T(xy) = 0/or a//y G H00}.

Proof. We knew already that this lemma is true for p = 2 and for p = oo

(cf. [1, Corollary 2.2.4]).

(1) We shall prove the lemma for 1 <p < 2 using Proposition 1 and for

p > 2 by a duality argument.

Let 1 <p < 2. Define the number rby l/r + 1/2 = 1 /p. It is evident that

Hp G Hx n LP(M, r). To show the reverse inclusion, consider any x G Hx

D LP(M, t). Let x = |x*|o be the polar decomposition of x. Put k =

f(\x*\p/2), where/is the function in the proof of Lemma 3. Then there is an

element a G H°° with inverse lying in H2 such that ax (=£ 0) G Hx n

U(M, t). Since U(M, t) c L2(M, t), we have

axG Hx n Lr(M, r) gHx n L2(M, r) = H2 c /F\

So

x = a~xax G H2ax G[H°°ax]   c Hp.
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It follows that H" = Hx n LP(M, t) in this case. Hp = H¿ n LP(M, t) in

the case 1 <p < 2 may be proved in just the same way.

Let 2 <p < oo. Here again the inclusion Hp c Hx n LP(M, x) is trivial. It

is sufficient to show that if y E Lq(M, t) where l/p + l/q = I andyA.Hp,

i.e. r(yx) = 0, x E Hp, then y±Hx n Z/(M, t). Now the relation >>_!_#'

implies by Lemma 4 that^ G H¿ n L«(M, t) = Hg, as 1 < ? < 2. So there

exista G //0°° such that \\y„ - y\\q^>0. This means that 0 = T(ynx) -» r(yx)

for all* G Hx n L'(A/, t). So^X//1 n L'(M, t).

(2) and (3) are clear by (1) and Lemmas 3 and 4. This completes the proof.

4. Let 5DÎ be a closed subspace of LP(M, t). We shall say that 3K is left-

(resp. right-) invariant if HXW E m (resp. WIHX E 3JÎ). Our goal in this

note is the following theorem.

Theorem. Let Wl be a left- (or right-) invariant subspace of LP(M, t),

1 < p < oo. Then 2JÎ is the closure of the space of bounded operators it

contains.

Proof. (1) Case 2 < p < oo. Define the number q by the equation l/p +

l/q = 1. If [9JÎ n M]pcWl, then there exist an element £ G 3Jc and x G

L?(Af, t) such that r(Çx) ¥= 0 and t(.vx) = 0 for every y E [3R n ML,. Let

£ = |£*|u be the polar decomposition of £. Since £ G L^M, t) c L2(M, t),

we may form k = /(||*|), where / is the function in the proof of Lemma 3.

Note that k E M and k~x E LP(M, t) c L2(M, t). By Proposition 1, we

may choose a unitary operator m in M and an operator a E H™ such that

k = ua and a~x G H2. By Proposition 2, a-1 G LP(M, r) n H2 = //' and

note that a£ is a nonzero element in 37Í n M. Since 3JÎ is left-invariant, we

have bai G 37Î n A/ for every b E H™ and so r(6a|jc) = 0. By Proposition

2, a£x G HP. Therefore t(£x) = r(a~xa^x) = 0. This is a contradiction.

(2) Case 1 < p < 2. Define the number q and r by the equations l/p +

l/q = 1 and l/r + 1/2 = l/p. If [3Jè n M], C 9fl, then there exist £ G TI

and x G ¿'(M, t) such that t(£c) =^ 0 and r(yx) = 0 for every y G [3T¿ n

A/L,. Let £ = ||*|ü be the polar decomposition of £ Put & = f(\£*\p/2), where/

is the function in the proof of Lemma 3. By Proposition 1, there is an element

a E H°° with inverse lying in H2 such that a£ (^ 0) G U(M, r)nlc

L2(M, t) n 3JÎ. As in (1), there exists an element b E Hx with inverse lying

in Hr such that bai (^ 0) G 3TÍ n M. For every c G Hx, we have cba£ E 3JÎ

D Af and so r(cbal-x) = 0. By Proposition 2, ¿>a£x G Hg. Since (¿>a)_I =

a_1è_1 G H2Hr c #', we have t(£x) = T((¿>a)_1í>a^) = 0. This is a con-

tradiction.

This completes the proof.
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