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ULTRA-STRONG DITKIN SETS IN HYPERGROUPS

AJIT KAUR CHILANA AND AJAY KUMAR

Abstract. We introduce compactly separating sets for hypergroups which

under certain conditions turn out to be ultra-strong Ditkin for the hyper-

group algebra whenever their boundary is. We also characterize such sets for

the hypergroup related to p-adic numbers.

1. Introduction. Wik [13] defined and studied strong Ditkin sets in the circle

group F as those spectral sets E in T for which there exists an approximate

identity in the kernel k(E) of E in lx(Z). Rosenthal [9] carried this study

further to some locally compact abelian groups T, in particular, he proved

that every closed coset in T is strong Ditkin and a nowhere dense strong

Ditkin set is a member of the discrete coset ring R(Td). Gilbert [5] proved that

closed sets in R(Td) are Calderón and Schreiber [10] showed that every such

set is strong Ditkin thus completing the characterization of strong Ditkin sets

with empty interior. Liu, Rooij and Wang [8] showed that a closed ideal I in

LX(G) has a bounded approximate identity if and only if I is the kernel of a

closed element E of R(Td) where T is the dual group of G. Rosenthal [9]

proved that if both G and T are metrizable then E is strong Ditkin whenever

the boundary Bd E of E is. However'his method does not force E to be

ultra-strong Ditkin even if Bd E is. On the contrary, it follows from the above

discussion that every proper closed interval I in the additive group R is strong

Ditkin because its boundary is ultra-strong Ditkin whereas I cannot be

ultra-strong Ditkin. A study of such notions for hypergroup algebras was

begun in [1], [2]. Let A' be a locally compact commutative hypergroup with

Haar measure m [3], [7], [11], [12] whose dual K is a hypergroup and equals

the set Xt>(K) of bounded continuous characters on K, Lx(m) = LX(K) the

convolution algebra and A(K) the algebra of Fourier transforms / of / in

LX(K). As in [1], a closed subset E of K will be called strong Ditkin if there

exists a net {fa: a G D) in LX(K) such that

(i) for each a, fa = 0 in a neighborhood of E and has compact support,

(ii) sup{||/J|£: a G D) < oo, where

ILy* = sup{||/«^lr/e •/(£), Mil < O
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and

(iii) for / G k(E), f*fa^>f in LX(K), where J(E) is the closure of {/ G

LX(K): f vanishes in a neighborhood of E) and k(E) = {/ G LX(K): f

vanishes on E).

E will be called ultra-strong Ditkin if it satisfies (i) and (iii) of above and

sup{||/J|,:ae D}< oo.

The empty set and the members of the center Z(K) of K are all ultra-strong

Ditkin, other points of K need not even be spectral. Nothing is known about

the status of subhypergroups of K. In this paper we introduce a class of

closed subsets E of K, called compactly separating, for which E is ultra-

strong Ditkin whenever Bd E is. This class includes the classes of open

subhypergroups of K whose complements are compact and of complements

of compact open subhypergroups of K. This immediately gives that all such

hypergroups are ultra-strong Ditkin. We characterize this class (and also the

ultra-strong Ditkin sets) for the example given by Dunkl and Ramirez [4] and

further prove that not every closed subset is ultra-strong Ditkin even though

every closed subset is strong Ditkin [4], [2], [1]. We shall freely use the

notations, terminology and results on spectral synthesis for the hypergroup

algebra LX(K) from [1], [2]. In particular, K will be a commutative hyper-

group whose dual K is a hypergroup and equals x¿(^0- We just remark that

most of the results can be reformulated even when K is not x*(^0 à la

Theorem 3.3 [2]. Further their analogues for Segal algebras based on [1] can

also be proved.

2. Definition 1. Let E and F be closed subsets of K and a > 1. F will be

said to be a-boundedly disjoint from E if there exists a symmetric neighbor-

hood V of 1 with compact closure such that

(i) (F * V * V) n E = $ and

(ii) ir(F* V)/tr(V) < a.

Definition 2. A closed subset E of K will be called compactly separating if

for some a > 1, every compact subset of K \ E is a-boundedly disjoint from

E.

Lemma 3. Let F be a compact subset of K which is a2-boundedly disjoint from

a closed subset E of K. Then there exists a <p E A^K) such that <p is 1 on F,

zero on E, 0 < <p < 1 and \\<p\\A < a.

Proof. Choose V as in Definition 1 and then apply Lemma 2.5 [2].

Theorem 4. Let E be a compactly separating subset of K. If Bd E is

ultra-strong Ditkin then so is E.

Proof. Because of Lemma 3, Rosenthal's proof of the corresponding result

viz. Theorem 2.4(b) [9] for strong Ditkin sets can be modified to give this

result.



ULTRA-STRONG DITKIN SETS IN HYPERGROUPS 355

Remark 5. We just note that ultra-strong Ditkin sets need not be com-

pactly separating. For instance it can be easily seen that no point of the group

T is compactly separating.

Corollary 6. Let E0 denote the set of points of K which are ultra-strong

Ditkin. If K is discrete at points of K \ F0 for some finite subset F0 of E0 then

every compactly separating subset of K is ultra-strong Ditkin.

Proof. It follows immediately from the above theorem since finite unions

of ultra-strong Ditkin sets are ultra-strong Ditkin [1, Remark 3.4(vi)].

Remark 7. The corresponding results for Calderón (F0 can be even

countable) and strong Ditkin sets can be easily formulated.

Theorem 8. Let H be an open subhypergroup of K.

(i) if H is compact then K \ H is compactly separating,

(ii) if K \ H is compact then H is compactly separating.

Proof, (i) Take V = H. For any compact subset F of H, F * V * V =

F * V G H and thus F is 1-boundedly disjoint from K\ H.

(ii) Let V be any compact neighborhood of 1 contained in H. By [7, 10.3A]

(K\H)* H * H = K\H.

Let a = it(K \ H)/it(V). So for any compact subset F of K \ H,

(F * V * V) n H = $ and tr(F * V)/ir(V) < a. Thus F is a-boundedly dis-

joint from H.

Theorem 9. (i) The complement of a compact open subhypergroup H in K is

ultra-strong Ditkin.

(ii) An open subhypergroup with a compact complement is ultra-strong Ditkin.

Proof. The sets in both the cases are closed and have empty boundary.

Further 4> is ultra-strong Ditkin by Remark 3.4(h) [1], which in fact, follows

immediately from Theorem 2.8 of [2] on the existence of a bounded ap-

proximate identity in LX(K).

Example 10. Letp be a prime number and a = 1/p. Then the hypergroup

Ha is defined by Dunkl and Ramirez [4] to be the one point compactification

Z*. of the set Z+ of positive integers with Haar measure m given by

m(k) = (1 - a)ak,   k ^ oo,

= 0,   k = oo,

and convolution given by

Pn*Pm= Pminin, m)   for n, m G Z* and n=£m,fornGZ+,

Pn*Pn(t) =

andpc

0, t <n,
1 -2a
-.-,     t = n,
1 - a

ak, t = n + k> n,

ÛO -T OO
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As explained in Example 4.6 [2] Ha can be considered as K, where K is Ha

and members of Ha are given by{x„:nGZ+) where

Í0, k <n - 1,
X„(k) = \a/ (a - 1),     k = n-l,

[ 1, k > n or k = oo.

(i) A closed subset E of ^ is compactly separating if and only if either E is

finite and oo G E or K \ E is finite if and only if is is open.

(ii)(a) All closed open subsets of K are ultra-strong Ditkin.

(b) All finite subsets of K are ultra-strong Ditkin.

(c) An infinite closed subset of K whose complement is infinite is not

ultra-strong Ditkin.

Equivalently,

(ii)' A closed subset E of K is ultra-strong Ditkin if and only if it is finite or

open.

Proof. (i)(a) Let E c K be closed such that K \ E is finite. Then oo G E.

Let k0 = max{A:: k E K \ E), V = {k G N: k > k0) u {oo} and a =

l/m(V). Then for any compact subset F of K \ E, F * V * V = F * V = F,

also w(ir) < 1 and therefore, F is a-boundedly disjoint from E. Hence E is

compactly separating.

(b) Let E c K be finite and oo E E. Let kQ = max{A:: & G £}, F = [k E

N: A: > fc0} u {oo} and a = l/w(F). Let B = {k E Z+: k < k0}\ E. Then

K\E= V u B.So

(K \E) * V * V = (V u B) * V * V = V U B = K\E.

So   for   any   compact   subset   F  of   K \ E,   (F*V*V)r\E = $   and

w(F * F)/w(K) < a. Hence E is compactly separating.

(c) Let E be a closed subset of .£ such that it is not of any of the above two

types.

Then K \ E is infinite and oo E E. Let K \ E = {k¡: i G N}, where {k¡} is

a strictly increasing sequence of positive integers. Let, if possible, E be

compactly separating and a a bound. Then F, ■= {k,: 1 < i < /} is a compact

subset oi K\ E and therefore, there exists a (symmetric) neighborhood Fy of

1 such that (Fj * Vj,* Vf) n E = $ and m(/} * ^)/m(^) < a. If ^,. £ {A::

k > kj) then there is ap < kj such that/) G V¡. There are two possibilities

(i)p E FjD Vf. Then

{kEN:k>p} cp*p eFj*VjcFj*Vj*Vj.

But   £   is   infinite   so   {k E N:   k > p} n E ¥= $,   which   contradicts

(/} * rç * Vf) n e = ®.
(ii)p E Vj\ Fj, then/? G E. Also/7 E kj * p c Fj * Vj. Sop E Fj * Vj * Vp

which is a contradiction. Hence Vj c {k: k > kj). So m(Vf) is less than or

equal to a**"1"1. Also Fj * Vj = Fy So

j
m(Fj * Vj) = m(Fj) = £ a*<(l - a) > jak'(l - a).
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So m(Fj * Vj)/m(Vj) > ja\l - a)/ak>+x = j(l - a)/a.

So/ < aa/(l — a), a contradiction. Hence E is not compactly separating

subset of K.

(d) The last equivalence now follows immediately because a closed set E in

K is open if and only if E is finite and oo G E or K \ E is finite and oo G E.

(ii)(a) Follows from (i) and Theorem 5 above.

(b) If E is finite and oo G F then E is ultra-strong Ditkin by (i). If E is

finite and oo G E then E \ {oo} is ultra-strong Ditkin by the above argu-

ment. Also {00} is ultra-strong Ditkin by Theorem 3.3 [2] and therefore, by

Remark 3.4(vi) [1], E is ultra-strong Ditkin.

(c) Let, if possible, E be ultra-strong Ditkin, since E is infinite and K \ E is

infinite there exists a sequence {a„} in N such that a„ < an 4- 1 < an+x,

an G K\ E and an 4- 1 G E for all n. Define <p on K by <p(a„) = l/n2 and

zero otherwise. Then <p G A(K) by Theorem 7.8 [4]. Further <p = 0 on E. Let

<p = /for/ G LX(K) then/ G k(E). Since E is ultra-strong Ditkin, k(E) has

factorization by Cohen's factorization theorem. So there exists g,h G k(E)

such that/ = g * h.

Then g(an + 1) = 0 for each n. So by Theorem 7.8 [4]

2 |¿(M < 2 !£(«)-«(»-1)| < ».
Similarly 2\h(an)\ < 00. Also l/n2 = /(«„) = g(«n)/î(an).

So by the Cauchy-Schwarz inequality

<(2|¿K)|)l/2(S|M«J|)1/2

< 00,    a contradiction.

Hence E is not ultra-strong Ditkin.

We thank the referee for his useful comments and suggestions.
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