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COMMON FLXED POINTS AND PARTIAL ORDERS

ARNE BR0NDSTED

Abstract.  It is observed that certain theorems on common fixed points

may be derived from a theorem on partially ordered sets.

In a previous note [2] we explained how certain fixed point' theorems are

direct consequences of certain theorems on partially ordered sets. In fact, let

(E, < ) be a partially ordered set which admits at least one maximal element

x0, and let / be a self-mapping of E such that x < fix) for all x G E; then

/(x0) = x0. In the present note (which is entirely conceptual) we shall develop

this point of view a little further; our motivation has mainly been the

appearance of [6].

Notation. Everywhere in the following (E, d) is a complete metric

space, < is a partial order on E (i.e., < is reflexive, transitive and asymmet-

ric), and <p is a real valued function on E which is bounded below. For x G E

we denote by S(x, < ) the set of points y G E such that x < y.

We shall base our considerations on the following variant of Theorem 1 of

[1]:

Proposition. Assume that

(a) q> is decreasing with respect to < , i.e., x < y implies <p(x) > œ( y);

(b) for all € > 0 there exists 8 > 0 such that x < y and <p(x) — <p( y) < S

implies d(x, y) < e.

Then there exists a sequence (x„)„eN in E (where xx may be taken arbitrary)

and a point x0 G E such that

(c) xn < x„+, for all n G N, and xn —» x0;

(d) y„ -► x0for all sequences (y„)„eN with xn < yn.

Furthermore,

(e) if x„ < x0 for all n G N, then x0 is maximal in (E, < ).

Proof. We define (x„)n(E1N inductively. Take xx G E arbitrary. When

x,, x2, . . . , x„ have been chosen, let an := inf <p(S(xn, <)), and take xn+1 G

S(xn, <) such that <p(x„+1) < an 4- n~x. Then x„ < xn+1, and for any y G

S(xn, < ) we have

an-\ <<*„< <P(y) < <P(*J <an_x + (n- I)"1. (*)

In particular, 0 < rf(xn) — <p(xm) < (n — l)~x for n < m. Using (b) we then
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see that (xn)neN is a Cauchy sequence, which by completeness converges,

x„ -» *o- Hence, (c) is proved. Using (b) it also follows from (*) that the

diameter of S(xn, <) tends to 0 as n tends to oo. Therefore, we also have

yn -» xQ when yn G S(xn, < ), whence (d) is proved. Finally, suppose that

xn < x0 for all n E N, and let y E E be such that x0 < y. Then we also have

x„ < y for all n E N by (c). Taking yn := 7 for all n EN, (d) then shows that

y = x0, i.e., x0 is maximal. So (e) is proved.

Remark 1. The proof of the Proposition is based on a standard argument,

cf. Remark 1 of [1] and the proof of Lemma 1.1 of [5]. The argument also

appears in [6] and [7].

Notation. Define a partial order < d,<p on E by letting x <d,vy if and only

if d(x,y) < tp(x) - <p(y), cf. [1], [2]. Call a self-mapping / of E admissible if

x < d,<p fix) for all x E E, and call a family F of self-mappings of E admissible

if each / G F is admissible. For a set F of self-mappings of E define a

relation < f on E by letting x < f y if and only if x = y or y =

fn° ' ' ' °f\(x) for suitable /,,...,/„ G F. (Clearly, <f is reflexive and

transitive. If F is admissible, then <f is finer than <d,<p, i.e., x <ry implies

x <d,9y, and therefore in this case </■ is also asymmetric, and hence a

partial order.) For a set F of self-mappings of E let F* denote the set of finite

compositions/, ° • • ■ ° /, of mappings/,, ...,/„ G F. (Note that x <py if

and only if x <f- y. Also note that if F is closed under finite compositions,

i.e., F = F*, then x <py if and only if x = y or y = /(x) for some / G F.)

Call F* closed under countable compositions if for each sequence (f%)„eN of

mappings fil E F* and each x E E such thatfZ(x) -*y for some 7 G E, there

exists g* G F* such that g*(x) = y.

Theorem. Let F be an admissible set of self-mappings of E. Assume that at

least one of the following conditions holds:

(1) <p is lower semicontinuous.

(2) F* is closed under countable compositions.

(3) Each f E F is continuous.

Then there is a common fixed point x0 for all mappings f E F.

Proof. In case (1) we shall apply the Proposition to the partial order <d,<p-

We first note that (a) and (b) hold for <¿,<p by the definition of <d,v-

Therefore, the Proposition is applicable, let (xn)„eN and x0 be as described in

(c)-(e). Now, note that the sets S(x, <d,v) are closed by (1). Therefore, since

xm E S(xn,<d,<p) for m > n, it follows that x0 E S(xn,<d,v), i.e., x„ <</,,, x0

for all n E N. By (e) it next follows that x0 is maximal in (E, <d,<p). Then x0 is

also maximal in (E, <f), since <f is finer than <d,v. This shows that

/(x0)=x0forall/GF.

In cases (2) and (3) we shall apply the Proposition to the partial order < f-

Since (a) and (b) hold for <d,<p, and <f is finer than <d,<p, (a) and (b) also

hold for <f- So, the Proposition is applicable, let (xn)nSN and x0 be as

described in (c)-(e).
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In case (2), suppose that there exists a subsequence (x¿)„eN of (xn)neN such

that x'n ¥= x'n+x for all n G N. Then for each n there exists/J" G F* such that

x'n+i = fi(<)> whence

Xn+p ~ Jn+p-i  ° "/«l1«)

for all «, p G N. Since x¿+í> -> x0 for p -> oo, it follows from (2) that there

exists g* G F* such that g*(x'„) = x0, whence x'n < f x0. But then clearly we

also have x„ <f x0 for all n G N. On the other hand, if no such subsequence

(x'n)neN exists, then xm+p = xm for some m G N and allp G N. Since xm+p -»

x0 forp -» oo, we see that xm+p = x0 for some m and allp. But then also in

this case we have x„ < f x0 for all « G N. By (e) we then see that x0 is

maximal in (E,<f), and therefore/(x0) = x0 for all/ G F.

In case (3), let / G F, and take y„ := f(x„). By (d) we then have f(xn) -» x0.

But we also have /(x„)-»/(x0) by (c) and the assumption (3). Therefore,

/(x0) - x0 for all/ G F.

Remark 2. Case (1) is only a slight extension of the so-called Caristi's fixed

point theorem, see [2], [3], [4]. Note that x0 is a common fixed point for all

admissible mappings.

Remark 3. In case (2), for any given point x, G E there is a common fixed

point x0 such that x0 = /„ ° • • • » fx(xx) for suitable/,, . . . ,/„ G F. In fact,

it follows from the Proposition that one can obtain xx <f x0. In particular, if

F = F*, then there is/ G F such that x0 = f(xx). This yields Theorem 1.6(a)

of [6].

Remark 4. In case (3), for any given point x, G E there is a common fixed

point x0 such that x0 is the limit of a sequence (/¡'(x1))neN, where ft G F*;

this follows from the Proposition. If in addition F = F*, then there is a

sequence (/„)„eN with/, G F such that/„(x,) -» x0. This yields Theorem 1.6

(b) of [6].

Remark 5. The existence of a fixed point x0 for a simple continuous

admissible mapping / follows easily by a direct argument. In fact, since

f(x) <d,vf"(x) when n < m, and <p is decreasing with respect to <d,<p, we see

that the sequence (<p(f(x)))„f=ls is a decreasing sequence in R. Since <p is

bounded below, we have <p(/"(x)) -» a, where a := infn6N <p(f(x)). There-

fore, since d(fn(x), f"(x)) < <p(f"(x)) - <p(/m(x)) for n < m, it follows that

(/"(■*))„en is a Cauchy sequence. By completeness then there is x0 G E such

that f(x) -» x0. By continuity of / we then also have f(x) -» /(x0), i.e.,

/(x0) = x0. This should be compared with §1.7 of [6].

The author is grateful to the referee for pointing out some inaccuracies in

the original version of this note.
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