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COMMON FIXED POINT THEOREMS FOR COMMUTING

MAPS ON A METRIC SPACE

K. M. DAS AND K. VISWANATHA NAIK

Abstract. Results generalizing and unifying fixed point theorems of Jungck

and Ciric are established.

1. The purpose of this paper is to generalize and unify fixed point theorems

of Jungck [2] and Ciric [1] (cf. Theorems 1.1 and 1.2 below). As a corollary of

the main result (Theorem 3.1) another result (Theorem 3.2) concerning

commuting, not necessarily continuous, mappings is also proved.

Theorem 1.1 (G. Jungck [2]). Let X be a complete metric space. Let f and g

be commuting continuous self-maps on X such that

g(X)cf(X). (1.1)

Further, let there exist a constant a G (0, 1) such that for every x,y in X

d(gx,gy)<ad(fx,fy). (1.2)

Then f and g have a unique common fixed point.

Theorem 1.2 (Ciric [1]). Let X be a complete metric space. Let f be a

self-map on X such that for some constant a G (0, 1) and for every x,y in X

d(fx,fy) < a max{d(x,y), d(x,fx), d(y,fy), d(x,fy), d(y,fx)}.  (1.3)

Then f possesses a unique fixed point.

We remark that (1.3) is the most general among contractive type conditions

studied by various authors. For details about these refer to Rhoades [3].

2. In this section, we prove a fixed point theorem which is a generalization

of Theorem 1.1.

Let A' be a complete metric space. Let/ be a continuous self-map on X and

let g be any self-map on X such that (1.1) is satisfied. We define a sequence of

points {x„} as follows. For x0 (GX) arbitrary, let x, (GX), guaranteed by

(1.1), be such that g(x0) = f(xx). Having defined x„ (GX), let x„+1 (GX) be

such that g(x„) = /(xn+1).

Letting g(xn) (= f(xn+x)) = y„ (n = 0, 1, 2,. . . ) we denote by 0(yk; n) the

set of points {yk, yk+x, . . . , y*+n}- Let us assume that / and g satisfy the

following condition:

There exists a constant a G (0, 1) such that for every x,y in X,
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d(gx, gy) <a max{d(fx,fy), d(fx, gx), d(fy, gy),

d(fx,gy),d(fy,gx)}.    (2.1)

We begin with some results about 8(0(yk; n)), the diameter of 0(yk; n), in

the form of lemmas. (These are slight variations on the ones in Ciric [1].) The

proofs are indicated for the sake of completeness.

Lemma   2.1.   For   k > 0   and  n G N,   suppose   8(0(yk; n)) > 0.   Then

8(0(yk; n)) = d(yk,yf), where j is such that k <j < k + n. Also

8(0(yk; n)) < a8(0(yk_x; n + I))       (k > 1). (2.2)

Proof. For i,j such that 1 < i </,

d(y¡,yj) = d(gxi,gxJ)

< a ma\{d(fx¡,fXj), d(fxt, gx¡), d(fxp gxy), d(fx¡, gXj), d(fxr gx¡)}

= a ma\{d(yi_x,yj_x), d(yi_x,yi), d(yj_x,yj), d(yi_x,yJ), d(yj_x,yi)).

Thus

d(yi,yj)<a8(0(yi_x;j-i+l)). (2.3)

Now 8(0(yk; n)) = d(y¡,yj), for some i, j satisfying k < i <j < k + n, in

view of the fact that the supremum of a finite number of distances is taken.

If / > k, then by (2.3):

8(0(yk; n)) < a8(0(y¡_x;j - i + I))

with i — I > k and/ < k + n, whence

S(0(yk; n)) < a8(0(yk; n)),

a contradiction. This proves the first assertion. Moreover,

8(0(yk; n)) = d(yk,yj) < a8(0(yk_x;j - k + 1))

< a8(0(yk_x; n + 1)).

Lemma 2.2. Under the hypotheses of Lemma 2.1,

8(0(yk; n)) < -^—d(y0,yx). (2.4)
i — a

Proof.

8(0(y¡; m)) = d(y„yj) < d(y„yx+l) + d(yx + „yj)

<d(y„yx+l) + 8(0(yx+l;m-l)),

since/ < I + m. Thus

8(0(y,; m)) < d(y„yx+l) + a8(0(y,; m)),

in view of (2.3). This leads to

8(0(yr,m))<T--^d(yl,yx+l). (2.5)



common fixed point theorems FOR COMMUTING MAPS 371

By repeated application of (2.2) we have

8(0(yk; n)) < ak8(O(y0; n + A:)),

whence (2.4) follows in view of (2.5) with / = 0, m = n 4- k.

Theorem 2.1. Let X be a complete metric space. Let f be a continuous

self-map on X and g be any self-map on X that commutes with f. Further, let f

and g satisfy (1.1) and (2.1). Then f and g have a unique common fixed point.

Proof. We first remark that it is sufficient to produce a point y such that

fiy) = g(y)- For then

d(ggy, gy) < a max{d(fgy,fy), d(fgy, ggy), d(fy, gy), d(fgy, gy), d(fy, ggy)}

= ad(ggy,gy)

shows that g(y) is a fixed point of g. Observing /( gy) = g(fy) = g(gy) =

g(y), we see that g(y) is also a fixed point off.

If for some n and k, 8(0(yk; n)) = 0 we have yk = yk+x, i.e., f(xk+x) =

g(xk+x). Otherwise 8(0(yk; n)) > 0. Given e > 0, let n0 G N be such that

an°d(y0,yx) < (1 - a)e. Thus for m > n > n0,

d(ym,yn)<8(O(y„0;m-nQ))<e,

in view of Lemma 2.2 and the choice of n0.

Hence { y„}, a Cauchy sequence in a complete metric space, has a limit, say

y. By continuity of / [f(y„)} converges to fiy). Moreover, {g(y„) ( =

f(y„+x))} also converges to/(y). Further,

d(fyn + x,gy) = d(gy„,gy)

< a ma\{d(fy„,fy), d(fy„, gyn), d(fy, gy), d(fy„, gy), d(fy„, gy„)}

in the limit leads to d(fy, gy) < ad(fy, gy), whence fy = gy for otherwise

a > 1.

The uniqueness of the common fixed point is immediate from (2.1).

Remark 1. In Theorem 2.1, setting//^, the identity map on X, we get

Theorem 1.2. Moreover, Theorem 1.1 follows from Theorem 2.1 on noting

that (1.2) implies (2.1).

Remark 2. If in place of g some iterate g' of g satisfies the hypotheses (1.1)

and (2.1), then also the conclusion of Theorem 2.1 follows in view of

fig(x)) — g'(g(x)) = g(x), where x is the unique common fixed point of /

andg'.

Remark 3. If {g\}\eA *s a commuting family of self-maps on X such that

for each À G A, the hypotheses of Theorem 2.1 hold with g replaced by gx,

then it is easy to see that there exists a unique point x such that fix) = gx(x)

= x for every X G A.

3. In the next theorem the domain of g coincides with fiX). Also the

weaker hypothesis, namely, continuity of/2 (in place of that off) suffices. We

conclude the section with an example to show that the conclusion of Jungck's
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theorem holds for / not necessarily continuous.

Theorem 3.1. Let X be a complete metric space. Let f be a self-map on X

such that f2 is continuous. Let g: fiX) —» X be such that

gf(X)cf2(X) (3.1)

andfig(x)) = g(fix)) whenever both sides are defined. Further, let there exist a

number a E (0, 1) such that (2.1) holds for every x,y infiX). Then fand g have

a unique common fixed point.

Proof. Starting with an arbitrary point x0 in fiX) and appealing to

condition (3.1), we construct a sequence {*„} of points in fiX) such that

/(*n+i) = g(x„) = y„, say. Note that/(.y,) = f(g(xn)) = g(f(x„)) = g(yn_x) =

z„, say.

Arguing as in Lemmas 2.1 and 2.2, we get that for k > 0, n E N,

8(0(zk; n)) < j^—d(z0, zx).

This yields that {z„} is a Cauchy sequence in X and hence convergent to

some z in X. By continuity off2, {f2(z„)} converges to/2(z).

Moreover, gf(zn) = gf(f2xn+x) = /2(/(gx„+1)) = /2(z„+1) implies that

{gf(zn)} converges to/2(z). Further,

d{f\+l,gfz) = d(gfzn,gfz)

< a max{4/2z„,/2z), d{f\, gfz„),

d(f2z, gfz),d(f2zn, gfz),d(f2z, gfzn)}

in the limit leads to

d(f2z, gfz) < ad(f2z, gfz).

Thus/2z = gfz.

Finally,

d(g(gfz), gfz) < a max{d(fgfz,f2z), d(fgfz, ggfz),

d(f2z, gfz), d(fgfz, gfz), d(f2z, ggfz)}

= ad(g(gfz), gfz)

yields g(gfz) = gfz; gfz can be easily seen to be a fixed point of/also. Hence

/ and g have a common fixed point. The uniqueness follows once again from

(2.1).
As an easy corollary of this we have:

Theorem 3.2. Assume that all the hypotheses of Theorem 1.1 except continu-

ity of f hold. Let f2 be continuous. Then f and g have a unique common fixed

point.
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Proof. Note that fiX) 3 g(X) implies that f2(X) 3 f(g(X) = g(f(X))),

i.e., (3.1) holds. Since (2.1) obviously holds, the conclusion follows in view of

Theorem 3.1.

The following example illustrates that Theorem 3.2 is indeed a generaliza-

tion of Jungck's theorem.

Example. Let X be (—00, 00) with the usual metric. Define/: X-+X as

follows

for x < — 1,

for - 1 < x < 1,
for x > 1.

for-1 <x < 0,

for 0 < x < 1,

0   forx G(-oo, -1] u[l, 00).

Clearly,/ is discontinuous, but/2 is continuous. It is easy to verify that all the

other hypotheses of Theorem 1.1 hold. The (unique) common fixed point,

namely 1/3, is guaranteed by Theorem 3.2. It is obvious that Jungck's

theorem, however, is not applicable.

4. It is almost evident from the proof of Theorem 3.1 that the following

generalization is valid. Since the proof is basically the same, we only state the

result.

Theorem 4.1. Let X be a complete metric space, f a self-map on X such that

f", m any fixed positive integer, is continuous. Let g: f"~x(X) —» X be such that

g{fm-\X))Gfm(X)

and g and f commute. Further let there exist a number a G (0, 1) such that (2.1)

is satisfied for every x,y in fm~x(X). Then f and g have a unique common fixed

point.
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