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A NOTE ON THE ASYMPTOTIC BEHAVIOUR

OF THE SUM OF PRINCIPAL RADII OF CURVATURE

ON NONCOMPACT COMPLETE HYPERSURFACES

V. I. OLIKER

Abstract. It is shown that under certain hypotheses the following conjec-

ture is correct: on a noncompact complete hypersurface in Euclidean space

the two conditions below cannot hold simultaneously:

(i) the sum of principal radii of curvature is bounded;

(ii) the support function is uniformly continuous.

I. The main result. Let 9" be a noncompact C3 hypersurface in Euclidean

space Em+X (m > 2), and r(u) the position vector of 9"; « = {«'}, /' =

1, . . . , m, are the local coordinates on 9. Assume that S" is equipped with

the metric induced from Em+X. Suppose also that ?T is orientable and

oriented. If it is not so then we pass to the universal covering of 9" and then

work on that covering. Under such circumstances there exists on 5T a C2

vector field of unit normals, and one may consider the Gauss map y: 5" -* 2,

where 2 is the hypersphere of unit radius in Em+X centered at the origin. By

?F* we denote a set on 2 which contains the limits of all converging sequences

of the form y(pk) where pk is a sequence of points on 5" unbounded in the

metric of 9".

In this note we shall study the asymptotic behaviour of 5". For that reason

our further assumptions are related to an "infinite" part of 5\ Assume that

?T* ̂  0. Then we call a "leaving domain" any submanifold 9"' of 5" with the

following properties:

(a) there exists an open domain B on 2 with a boundary of class C*

(k > 2) such that B n 9"* = 0, 35 n 9* ¥= 0 and y is a diffeomorphism

mapping 5"' onto B;

(b) for any sequence of points nk E B converging to a point from ?T* the

sequence y ~ x(nk) is an unbounded sequence on ÍT'.

We also say that a leaving domain 9' is asymptotically regular if the

support function h(u) = (r(u), n(u)), n E S7, transplanted via yonfi can be

extended to B + dB as a continuous function and its restriction <p(u) =

Ku)\dB is a C1^ function, 0 < X < 1. Here ( , ) means, as usual, the inner

product in Em+X.
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Geometrically, asymptotic regularity means that for each connected com-

ponent of dB n 9'* all asymptotes to the corresponding part of 9"' lie in a

family of hyperplanes defined by the function q>(u).

Finally, we note that, like the function h(u), any function defined on a

leaving domain can be transplanted via y to B.

In what follows, by an Lp norm, p > 1, of a function on 9"' we understand

the Lp norm with respect to the volume element of the standard metric of 2.

Now we are ready to state:

Theorem. Let 9" be as above and 9* ¥^ 0. Suppose that there exists a

leaving domain 9"' C 9". Then the following two conditions cannot hold simulta-

neously on 9' (hence on 9"):

(i) the sum of the principal radii of curvature R(u), u G 5"', has a finite Lm+S

norm for some positive 8;

(ii) 9' is asymptotically regular.

Corollary. If a C3 noncompact hypersurface 9" contains an asymptotically

regular leaving domain 9', then

sup \R(u)\ = oo.

It is not difficult to give examples illustrating the theorem. For instance, a

catenoid in E3 is a surface on which R(u) = 0 but obviously no leaving

domain of it is asymptotically regular. Moreover, for the catenoid both

conditions defining asymptotic regularity are violated. In general, the above

theorem asserts that a minimal surface cannot have a leaving domain which is

asymptotically regular.

A branch of hyperbola when rotated about one of its asymptotes gives an

example of a surface which has an asymptotically regular leaving domain.

This can be easily seen if we note that the subset of 9* corresponding to the

"horn" of this surface is an equator of 2, and as a domain B we can take a

narrow strip along this equator. In this case all asymptotes to the correspond-

ing part of the surface coincide with the asymptote of the original hyperbola.

Placing the origin of coordinate system in £3 on this asymptote we can make

<p(u) = 0. The corollary implies then that R(u) cannot be bounded on such a

surface.

II. The proof. (1) At first we note that if 9"' is a leaving domain of 9 then

9"' can be recovered from its support function as

r(u) = grad h(u) + h(u)n(u),       u G B, (1)

where the gradient is taken in the standard metric of 2. This time u is a point

in B c 2. The representation (1) is possible because y is a C2 diffeomorphism

on 9"' and that implies that the Gauss curvature K ^ 0 on 9'. Under such

circumstances the existence of representation (1) is shown, for example, by

Hartman and Wintner [3]. Note, however, that if 9' was originally of class
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C3, (1) gives in general only a C2 representation. At the same time the

support function remains of class C3 in B.

(2) Here we show that a leaving domain is unbounded in Em+X. For that

we observe at first that for any connected subdomain ¿ci such that

aB n 9"* ¥= 0, the hypersurface 9, = {r = r(u), u E B} will have the prop-

erty (b) of a leaving domain. Select B sufficiently small so that there could be

found a point c E 2 such that both c itself and the point c symmetric to c

with respect to the center of 2 do not lie in 9",*. This is possible since the

Gauss map y is a diffeomorphism on 9,. Now take a path I in B with an

endpoint q in 9,*. Because of the way the diameter cc was chosen it becomes

apparent that near the point q the angles between the normals to the tangent

hyperplanes to 9[ along / and the diameter cc are bounded away from zero.

Therefore, a height function on 9, in the direction cc has no critical points

and q is not a critical point at infinity. Since 9, is a leaving domain, the latter

implies that 9, is unbounded in the direction cc.

The above argument is actually a special case of a more general proof of

unboundedness of complete submanifolds in Euclidean space (see Verner [5]).

(3) Because of (2) we have

\r(u)\u-* oo,       ?e9,*c9'*,    uEB. (2)

In view of (1) this may occur only if either |grad h\ or \h\, or both, becomes

unbounded when u -» q. However, if 9' is asymptotically regular then h is

continuous in B + dB, and therefore it is the |grad h\ which must be un-

bounded. We want to show that it is impossible if R(u) E Lm+S(B) for some

8 >0.

The functions R(u) and h(u) are related by the Weingarten equation (see,

for example, [3])

A2/i(m) + mh(u) = R(u),       u E B, (3)

where A2 is the Laplace operator on 2. As has already been mentioned the

function h(u) E C3(B); hence R(u) E CX(B). Suppose that R(u) E CX(B) n

LP(B) where we write for brevity p = m + 8. Since 9' is asymptotically

regular, h(u)\dB = <p(u) £ Cx,x(dB). Denote by/(h) the solution of the follow-

ing boundary value problem

A2/(«) = °   when u E B,

fiu) = <p(u)   when m £ dB.

By our assumptions the boundary dB is not empty and it is of class C2.

Under such circumstances the solution fiu) exists, is unique, and is of class

C2(B) n CX\B + dB) (see [2, p. 102]).

Put H(u) = h(u) — fiu). Subsituting this in (3) we obtain

&2H(u) = R(u) - mh(u),       u £ B. (4)

Also, H(u) = 0 when u E dB. Now, since R(u) - mh(u) E LP(B) with/7 > m

> 2, it follows that H(u) belongs to the Sobolev space  rV^B) (see [2,
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Theorems 8.9, p. 175, and 8.12, p. 176]). Moreover, the latter together with the

hypothesisp > m imply that H(u) G CX,I*(B + dB), where p = 1 — m/p (see

[4, Theorem 15.1, p. 203]).

Since h(u) = fiu) 4- H(u), and fiu) G CX*(B + dB), the above means that

h(u) G CXJ(B 4- dB), where / = min{X, p}. Therefore |grad h\ is bounded in

B 4- dB. Thus we arrive at a contradiction with (2). The theorem is proved.

The corollary is an immediate consequence of the theorem.

III. Remarks. (1) The concept of a leaving domain has been introduced by

Cohn-Vossen [1] in a much more general form. For two-dimensional com-

plete surfaces in E3 with univalent Gauss map the leaving domains and the

limiting sets of their Gauss images were studied by Verner [6].

(2) Our result is probably true under milder conditions defining the

asymptotic behavior of leaving domains. For example, it seems plausible that

the condition requiring the support function of an asymptotically regular

leaving domain to be of class CIX on the boundary of its Gauss image can be

dropped. However, in this case part (3) of the proof would need an approach

different from ours.
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