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AN INTUITIONISTIC DEFINITION OF

CLASSICAL NATURAL NUMBERS

VLADIMIR LIFSCHITZ

Abstract. A definition of natural numbers in the theory of species is given

which allows us to prove intuitionistically all theorems of classical

arithmetic. This provides an alternative to the well-known Godel negative

translation.

In this note we give a definition of natural numbers in the theory of species

[1] which allows us to prove intuitionistically all theorems of classical

arithmetic. This definition leads to a translation of classicial arithmetic into

the theory of species, which, unlike well-known Gödel-type translations, does

not change the logical form of translated formulae.

Recall that a species X is stable if Vx(-i -iAx —> Xx); this formula is

abbreviated as St(Ar). We define CN(Ar) ("X is a classical (natural) number")

by St(A') & -i -\3x(X = {x}). The theorem below shows that the species

satisfying this condition have essentially the same properties as natural

numbers in classical arithmetic.

If natural numbers are identified with singleton species, then the property

CN is weaker than being a natural number. Thus the collection of classicial

natural numbers can be looked upon as an extension of the collection of

natural numbers of constructive mathematics. It has often been said that the

meaning of the existential quantifier in constructive mathematics is different

from its classical meaning. The above remarks suggest that this difference is

perhaps more "quantitative" than "qualitative": classical quantifiers simply

restrict variables to a certain extension of the constructive system of natural

numbers.

These remarks also suggest that both classical and constructive theories of

natural numbers can be embedded into a more general system of arithmetic.

Such a system is sketched in the abstract [2] and will be discussed in detail

elsewhere.

HAS is the theory of species, A2 is classical second-order arithmetic. For

every primitive recursive function symbol /, let f* be the function symbol in

HAS defined by

f*Xx- ■■ Xk= Xy\fxx G Xx ■ ■ ■ Vxk G Xk(fxx ■ ■ ■ xk = y).
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For every first-order term r, let r* be the second-order term obtained from r

by substituting distinct species variables for all its parameters and replacing

every function symbol/by f*. For every first-order formula F, let F* be the

formula of HAS obtained from F by substituting distinct species variables for

all free and bound variables, replacing each function symbol / by /*, and

restricting each quantifier to CN.

The double negation translation F' of a first-order formula F is the result of

inserting -i -i before every 3 in F. (We assume that disjunction is eliminated

in favor of 3, as in [1, 1.3.7].)

Theorem. For every first-order sentence F,

(OIW****".
(ii)hAFi//hHASF*.

The proof is based on the following lemmas, where h stands for l~HAS.

Lemma 1. For every first-order term r(xx, . . . , xn), all parameters explicitly

shown:

(i) h &;_, CN(*,) - CN(r*(Xx.*„)),

(ii) h r*({xx), ..., {*„}) = {r(xx, ..., *„)}.

Proof. By induction on r, using the derivability of f*{xx) • ■ • {xk} =

{fxi • ■ ■ xk).

Lemma 2. For every formula F(X) of HAS, if

^VXcmx)(F(X)~-,^F(X))

then

\- 3XCN(X )F(X ) ~ -, -, 3XCN(X XF(X ).

Proof. Denote the term

Xx[F({x})&Vyy<x^F({y})]

by t. Arguing in HAS, assume

F({x})&\fyy<x^F({y}).

Then r = {x} and hence F(t). Denote 3x(t = {x}) & F(t) by G; thus we

proved that

3x[F({x}) &Vyy<x^F({y))]->G.

This formula implies successively

3xF({x})-»^G,

[3x(X = [x})&F(X)]-> -,-,G\

[CN(X)&F(X)]^>^-IG,

-i -i 3Xçf^x )F(X ) -» -i -i G.

Thus, assuming -i -i BXç^^^X), we derive -i -i G, i.e.

-,-,3x(i = {x})& -r-iF(t).
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On the other hand, we have St(f) and, consequently, CN(/) and -i -i F(t) —»

F(f). Hence CN(/) & F(t).

Lemma 3. For every first-order formula F(xx, . . ., xn), all parameters ex-

plicitly shown,

r &  CN(A-,)
i — i >[^^F*(Xx,...,Xn)~F*(Xx,...,Xn)].

Proof. By induction on F. Assume first that F is r = s; then F* is r* = s*.

Arguing in HAS, assume &"_x CN(X¡). By Lemma l(i), CN(r*) and CN(j*);

hence St(r*) and St(i*), and it suffices to notice that F* is equivalent to

Vy(r*y <-» s*y).

The cases when the principal sign of F is a propositional connective or V

are trivial (recall that V is eliminated). In the case of 3, use Lemma 2.

Lemma 4. For every first-order formula F(xx, . . . , xn), all parameters ex-

plicitly shown,

rF*({xx),...,{xn))~F'(xx,...,xn).

Proof. To simplify notation, assume n = 1. For atomic F use Lemma l(ii).

The case when the principal sign of F(x) is a propositional connective is

trivial.

Let F(x) be VyG(x, y). Then F'(x) is VyG'(x, y), F*(X) is

VyCN(r)G*(A', Y), and, by the hypothesis of induction, G*({x}, {y})<->

G'(x,y). The implication from F*({x}) to F'(x) is trivial. Arguing in HAS,

we derive from F'(x) successively

VyG*({x),{y}),

3y(Y={y})^G*({x}, Y),

CN(Y)->^^G*({x},Y),

i-.**({*})

and, using Lemma 3, F*({x}).

Now let F(x) be 3yG(x,y), so that F'(x) is -i -i3yG'(x,y), and F*(X) is

3yCN(y)G*(A, Y). Here again the implication from F*((x}) to F'(x) is

trivial. Assume G'(x,y); then, by the hypothesis of induction, G*((x}, {y})

and consequently F*({x}). Thus we derived

G'(x,y)^F*({x}).

It follows that

F'(*)-»-i-.**({*}).

By Lemma 3, —i —i can be dropped.

Now Part (i) of the theorem is a particular case of Lemma 4. Part (ii)

follows from Part (i) and from the fact that hHAS F' is equivalent to hA F.

The examination of the proof shows that HAS can be replaced in Part (i)

by much weaker systems. Consider e.g. the following restricted form of
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comprehension:

CA" Vxy((Ax &Ay)^>x=y)^> 3X\/x(Xx <-» Ax).

Let HAS" be obtained from HAS by replacing CA by CA~. Then F* *+F'

can be derived in HAS".

The proof-theoretic strength of HAS- is the same as that of first-order

arithmetic. It would be interesting to know whether HAS" is conservative

over Heyting's arithmetic HA.
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