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L2 HARMONIC FORMS ON ROTATIONALLY

SYMMETRIC RIEMANNIAN MANIFOLDS

JOZEF DODZIUK1

Abstract. The paper contains a vanishing theorem for L1 harmonic forms

on complete rotationally symmetric Riemannian manifolds. This theorem

requires no assumptions on curvature.

This paper gives necessary and sufficient conditions for existence of L2

harmonic forms on a special class of Riemannian manifolds. Manifolds of

this class were called models by Greene and Wu and played a crucial part in

the study of function theory on open manifolds [GW]. Throughout the paper

M will denote a model of dimension n, i.e. a C °° Riemannian manifold such

that:

(1) there exists a point o G M for which the exponential mapping is a

diffeomorphism of T0M onto M ;

(2) every linear isometry <p: TBM -» T0M is realized as the differential of an

isometry 4>: M -> M, i.e., 3>(o) = o and 0+(o) = <p.

Clearly, M is complete and can be identified with T0M via exp0. In terms

of geodesic polar coordinates (r, 0) G (0, oo) X S"_1 » M\{o} the

Riemannian metric ds2 of M can be written as

ds2 = dr2 + f(rf dB2, (3)

where dB2 denotes the standard metric on S"_1 and the function/(/■) is C°°

on [0, oo ) and satisfies

/(0) = 0,   /'(0) = 1,   f(r) > 0   for r > 0 (4)

(cf. [S, pp. 179-183]).

Complete description of the spaces %*(M) of L2 harmonic forms is

contained in the following

Theorem. Let M be a model of dimension n > 2. Then

(i)        W(M ) = {0}   for q^0, n/2, n,

(ii)       3(?(M)s 3C(A/)-

{0}     if rf{r)"-xdr=n,

'//   f(r)"-
Jo

dr < oo,
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(iii)        %k(M) = {0}    ifn = 2k and C°-^r = oo,
J\   ñs)

%k(M) is a Hilbert space of infinite dimension if n = 2k and

■ fV)<x-

Remark. The integral in (ii) is a multiple of the volume of M. Finiteness of

the integral /f° <&//(J) implies that M is conformally equivalent to an open

ball in R". If /J° ds/fis) = oo then M is conformai to R".

My interest in L2 harmonic forms is motivated in part by the well known

conjecture (cf. [C, p. 44]).

Conjecture 1. Let N be a compact Riemannian manifold of dimension 2k.

If the sectional curvature of N is nonpositive the Euler characteristic x(^)

satisfies (-l)*xW > 0-
I. M. Singer suggested that in view of the L2 index theorem [A] an

appropriate vanishing theorem for L2 harmonic forms on the universal

covering of N would imply the conjecture. To see what sort of vanishing

theorem to expect, I carried out an explicit computation in the case of

constant negative curvature. It turned out that the same computation yielded

a more general result which is the subject of this paper. The result itself is

rather surprising since the curvature of M has no effect on existence of L2

harmonic forms of degree q =£ 0,n/2,n. The vanishing in this range is a

consequence of duality between forms of degree q and n — q. The general

question of existence of nontrivial L2 harmonic forms on open manifolds is a

very difficult one. Nevertheless, I propose hesitantly the following:

Conjecture 2. Let AÍ be a simply connected complete Riemannian mani-

fold of dimension n and of nonpositive sectional curvature. Then there are no

nonzero L2 harmonic forms on M of degree q ¥= n/2.

Conjecture 2 combined with the L2 index theorem implies Conjecture 1.

Indeed, the L2 index theorem, applied to the operator d + 8 whose index is

equal to the Euler characteristic, states that L2 harmonic forms on the

universal covering N of N can be used to reckon the Euler characteristic of N.

More precisely x(^) is equal to the alternating sum

2k

i

where dimw(Ar) %P(N) is the normalized dimension of %P(N) with respect to

the natural'action of tt,(A0 on %P(N) (cf. [A]). Thus, if %P(Ñ) = {0} for

Pi=k,

(-l)tx(Ar) = dim^)^(iV)>0.

The following example due to E. Calabi shows that one cannot expect to

have %9(M) = {0} for q ¥= 0, n/2, n for every manifold M satisfying (1). Let

(Af„ drf + fi(r¡f d92) be a model of dimension n¡, i = 1,2. Suppose that n2 is
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even,

f  /,(i)"'-1tfc<a,,        I    777: < oo.
•'o -M   /2W

Then, according to the theorem %q(Ml) ¥= {0} for q = 0,n„ WiMJ # {0}

when q = n2/2. The Fubini theorem and the identity

imply that 5C9(Afj X A/2) ̂  {0} when ? = n2/2, n2/2 + »,.

The above construction cannot be used to produce a counterexample to

Conjecture 2. In order that M, X M2, when equipped with the product

metric, have nonpositive sectional curvature, A/, and M2 must have the same

property. This would force the integral fo fi(s)"'~l ds to diverge since the

volume of complete, simply connected Riemannian manifold of nonpositive

sectional curvature is infinite.

I am grateful to E. Calabi and J. Kazdan for many stimulating conversa-

tions about L2 harmonic forms and related matters.

Proof of theorem. According to a theorem of Andreotti and Vesentini (cf.

[dR, Theorem 26]) an L2 form to on M is harmonic if and only if it is closed

and coclosed. Thus a C°° ç-form u is in %q(M) if and only if

/ to A *w < oo,       du = 0,   d*u = 0, (5)

where * denotes the duality operator between forms of degree q and n — q.

Since *u A *(*w) = to A *w for every form to, * establishes an isomorphism

between %"(M) and ^iC^q(M). Let dV denote the volume element of the

Riemannian metric of M, and let < , ) and | | be the pointwise inner product

and norm, respectively, of differential forms on M. The global (integrated)

inner product and norm are given by

(W, Tj) =   (  tO A *•»? =   j    <W, T)> dV,
JM JM

||to||2 = [ to A *« = f M2 dV,
•>M JM

where u and tj are two forms of equal degrees. Corresponding objects on

S"-1 equipped with the standard metric will have to be considered. They will

be denoted by the same symbols as their counterparts on M with a subscript

0. For example, the volume elements dV and dV0 of M and 5"_1, respec-

tively, are related by dV - f{r)"~ ' dV0 A dr.

The case (ii) of the theorem is now trivial. If a is an L2 harmonic function

du = 0 by (5), i.e., u is constant. Constants are in L2 if and only if the total

volume of M is finite, which gives (ii). To study the remaining cases one

writes the conditions (5) in terms of geodesic polar coordinates (r, 9). If to is a

C°° q-form on A/\{o} of degree q =£ 0,n, then

u=a(r,9)Adr+b(r,e), (6)
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where a(r, 9), b(r, 0) are smooth forms on S"~l, depending on a parameter

r > 0, of degree q — 1 and q, respectively. Formally a = (—1),_1 t(3/3r)to,

b = to — a A dr, where t(9/3/-) is the interior product with the radial vector

field d/dr. Of course, a and b can be also regarded as forms on M\{o).

In terms of decomposition (6) *ío can be computed as follows:

•u = {-\)n~pfn-2"+x*oa + f"~2'l-i*0b dr. (7)

To prove this formula one uses the fact that * consists essentially of taking

orthogonal complement together with the identity

\h = *"**, («)

relating duality operators on q-îorms for two conformai metrics g and X2g.

Using (5), (6) and (7) one concludes that for u G %q (M) the following

conditions hold:

i00  f     (f-2"+l\a\20 + r-2"-l\b\l)dV0dr<oo,

d0b = 0,       d0*Qa = 0, (9)

d0a + (- irf = 0,

i(/n-2,+VWn"2^oV> = o-

Moreover the pointwise norm |to|2 is bounded near r = 0, i.e.,

|co|2 =/-2(«-1)|a|o +/-29|6|o < C   for/- G (0, 1].

Apply *  to the last equation in (9) and use commutativity

A A
dr *o     *o dr

to obtain the following set of conditions satisfied by a = a/\dr + bE

%q(M) on M\{o}

(a)       d0b = 0,

(b)       d0*a = 0,

(c)    d0a + (-iyfr = o,

(d)       -Í(/»-^>a) + (-I)«/»"2*- V = 0,

(e)       /-2<«-'Vio + /-2,Ho < C    for r G (0, 1 ],

(0        i" í     (/"-2?+V|o+/"-2MA|o)¿K0t//-<oo,

(10)

where 60 is the formal adjoint of dQ on S"~l. Observe now that if to G %q(M)

and 6 = 0, then a = 0. Indeed, if b = 0, then, by (10b) and (10c), a(r, 9) is a

harmonic form on S"~x for every fixed r > 0. Since 0 < deg a < ai — 2,
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a(r, 9) can be nonzero only if q — 1 = deg a = 0, in which case a(r, 9) is

independent of 0. On the other hand, by (lOd),

i.e., a = Cxf (n   [) which blows up at r = 0 contradicting (10e) unless C, «■

0.
Now eliminate a(r, 9) from the system consisting of equations (10c) and

(lOd). Thus apply d0 to (lOd) and use commutativity d0d/dr = (d/dr)d0 to

obtain

Take the inner product (over S"_1) of both sides of this equation with b

keeping r > 0 fixed to see that

(i(/,,_29+1¥)'6)o = /""2?"1(5oè'Ôoè)o > °-

Therefore

By (10e) and (4) \b\l = Oir2*) for small r. Hence

It follows that

>,»„- 2(£4 >0
for all r > 0, i.e. ||è||o is a nondecreasing function of r. Now suppose b ¥= 0.

Since ||6||q is monotone and

oo >H|2>||6||2= r°>-2«-'||6||J rfr,
•'o

the integral /«/"-2?-1 ¿r is finite. Thus for q ¥= 0,n, %q(M) =£ {0} implies

that /»/»-2i-i ¿r is finite. By duality %q(M) » ^C~q(M), i.e. if %"(M) ¥=

{0}, then the two integrals /J0/"-2?-' ¿r, /»/-"+2?-i ¿r are simultaneously

finite. If n = 2q the two integrands are the same. If, on the other hand,

n - 2q ¥= 0 then (« - 2q - \){-n + 2q - 1) = 1 - (n - 2?)2. Thus either

one of the exponents is equal to zero, or the two exponents have opposite

signs. In both cases one of the integrals has to diverge, which proves that

%q(M) = {0} if q ¥= 0,n/2,n. This still leaves the possibility that, for n = 2k,

%k(M) * {0} provided /r/"1 dr < oo. Such is the case and, in fact, %k(M)

has infinite dimension. The last assertion will follow from the following:
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Lemma. Let M be a model with the metric ds2 = dr2 + fir)2 d92. Define

R(r) = e/i*//w.

Then the mapping F: M~\{o) —»R"\{o} given (in terms of polar geodesic

coordinates (r, 9) on M and polar coordinates on R") by F(r, 9) — (R, 9)

extends to a C ' conformai diffeomorphism of M onto an open ball of (possible

infinite) radius equal to f^ds/fis) centered at the origin. Moreover, F is C" on

M\{o).

Remark. The lemma is due to Milnor [M] for n = 2, in which case F is C °°

everywhere. The proof for n > 2 is essentially the same and will not be

repeated here. If n > 2, the restriction of F to every plane through o is C°°. It

is likely that F is C°°, but the regularity asserted in the lemma is sufficient for

the purpose at hand.

To finish the proof of the theorem assume the lemma and suppose

dim M = 2k. By (8) the * operator acting on forms of degree k depends only

on the conformai structure. Thus all conditions in (5) are conformally

invariant. Assume that f^ds/fis) < oo and let B be the open ball in R" of

radius Jfds/fis). The space of all C°° fc-forms r/ on R" which satisfy the

equations dr¡ = 0, d*i\ = 0 (* induced by the standard flat metric) has infinite

dimension (e.g., if h(yx,y2, . . . ,yk+l) is a nonconstant harmonic function on

R*+1, then

Tj = d(h{xk, xk+x,..., xn) dxx... dxk_x)

satisfies the two equations). Restrictions of such forms to B are clearly in L2.

Thus the space % of Ä>forms on B satisfying conditions (5) with respect to

the flat metric has infinite dimension. By the lemma and the conformai

invariance, the space F*% consists of forms to of degree k which are

continuous, square integrable on M, C°° on M\{o) and satisfy du = d*u =

0 on M\{o}. Standard regularity theorem shows that every u E F*% is in

fact C °° and harmonic at every point of M. It follows that F* establishes an

isomorphism between % and %k(M) and that %k(M) has infinite dimension.
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