L² HARMONIC FORMS ON ROTATIONALLY SYMMETRIC RIEMANNIAN MANIFOLDS

JOZEF DODZIUK¹

ABSTRACT. The paper contains a vanishing theorem for L^2 harmonic forms on complete rotationally symmetric Riemannian manifolds. This theorem requires no assumptions on curvature.

This paper gives necessary and sufficient conditions for existence of L^2 harmonic forms on a special class of Riemannian manifolds. Manifolds of this class were called models by Greene and Wu and played a crucial part in the study of function theory on open manifolds [GW]. Throughout the paper M will denote a model of dimension n, i.e. a C^{∞} Riemannian manifold such that:

- (1) there exists a point $o \in M$ for which the exponential mapping is a diffeomorphism of T_oM onto M;
- (2) every linear isometry $\varphi: T_oM \to T_oM$ is realized as the differential of an isometry $\Phi: M \to M$, i.e., $\Phi(o) = o$ and $\Phi_{\star}(o) = \varphi$.

Clearly, M is complete and can be identified with T_oM via \exp_o . In terms of geodesic polar coordinates $(r, \theta) \in (0, \infty) \times S^{n-1} \cong M \setminus \{o\}$ the Riemannian metric ds^2 of M can be written as

$$ds^2 = dr^2 + f(r)^2 d\theta^2,$$
 (3)

where $d\theta^2$ denotes the standard metric on S^{n-1} and the function f(r) is C^{∞} on $[0, \infty)$ and satisfies

$$f(0) = 0, \quad f'(0) = 1, \quad f(r) > 0 \quad \text{for } r > 0$$
 (4)

(cf. [S, pp. 179-183]).

Complete description of the spaces $\mathcal{H}^*(M)$ of L^2 harmonic forms is contained in the following

THEOREM. Let M be a model of dimension n > 2. Then

(i)
$$\mathfrak{I}^{q}(M) = \{0\} \text{ for } q \neq 0, n/2, n,$$

(ii)
$$\mathfrak{R}^{0}(M) \cong \mathfrak{R}^{n}(M) \cong \begin{cases} \{0\} & \text{if } \int_{0}^{\infty} f(r)^{n-1} dr = \infty, \\ \mathbb{R} & \text{if } \int_{0}^{\infty} f(r)^{n-1} dr < \infty, \end{cases}$$

Received by the editors July 27, 1978 and, in revised form, December 4, 1978.

AMS (MOS) subject classifications (1970). Primary 58G99.

Key words and phrases. L² harmonic forms, vanishing theorems.

¹Partially supported by NSF Grant MCS 78-02285-A01.

(iii)
$$\Re(M) = \{0\}$$
 if $n = 2k$ and $\int_1^\infty \frac{ds}{f(s)} = \infty$,

 $\mathcal{K}^k(M)$ is a Hilbert space of infinite dimension if n = 2k and

$$\int_{1}^{\infty} \frac{ds}{f(s)} < \infty.$$

REMARK. The integral in (ii) is a multiple of the volume of M. Finiteness of the integral $\int_1^\infty ds/f(s)$ implies that M is conformally equivalent to an open ball in \mathbb{R}^n . If $\int_1^\infty ds/f(s) = \infty$ then M is conformal to \mathbb{R}^n .

My interest in L^2 harmonic forms is motivated in part by the well known conjecture (cf. [C, p. 44]).

Conjecture 1. Let N be a compact Riemannian manifold of dimension 2k. If the sectional curvature of N is nonpositive the Euler characteristic $\chi(N)$ satisfies $(-1)^k \chi(N) \ge 0$.

I. M. Singer suggested that in view of the L^2 index theorem [A] an appropriate vanishing theorem for L^2 harmonic forms on the universal covering of N would imply the conjecture. To see what sort of vanishing theorem to expect, I carried out an explicit computation in the case of constant negative curvature. It turned out that the same computation yielded a more general result which is the subject of this paper. The result itself is rather surprising since the curvature of M has no effect on existence of L^2 harmonic forms of degree $q \neq 0, n/2, n$. The vanishing in this range is a consequence of duality between forms of degree q and n-q. The general question of existence of nontrivial L^2 harmonic forms on open manifolds is a very difficult one. Nevertheless, I propose hesitantly the following:

Conjecture 2. Let M be a simply connected complete Riemannian manifold of dimension n and of nonpositive sectional curvature. Then there are no nonzero L^2 harmonic forms on M of degree $q \neq n/2$.

Conjecture 2 combined with the L^2 index theorem implies Conjecture 1. Indeed, the L^2 index theorem, applied to the operator $d + \delta$ whose index is equal to the Euler characteristic, states that L^2 harmonic forms on the universal covering \tilde{N} of N can be used to reckon the Euler characteristic of N. More precisely $\chi(N)$ is equal to the alternating sum

$$\sum_{1}^{2k} (-1)^p \dim_{\pi_1(N)} \mathcal{W}^p(\tilde{N}),$$

where $\dim_{\pi_1(N)} \mathcal{H}^p(\tilde{N})$ is the normalized dimension of $\mathcal{H}^p(\tilde{N})$ with respect to the natural action of $\pi_1(N)$ on $\mathcal{H}^p(\tilde{N})$ (cf. [A]). Thus, if $\mathcal{H}^p(\tilde{N}) = \{0\}$ for $p \neq k$,

$$(-1)^k \chi(N) = \dim_{\pi_1(N)} \mathfrak{R}^k(\tilde{N}) \geq 0.$$

The following example due to E. Calabi shows that one cannot expect to have $\mathcal{H}^q(M) = \{0\}$ for $q \neq 0$, n/2, n for every manifold M satisfying (1). Let $(M_i, dr_i^2 + f_i(r_i)^2 d\theta_i^2)$ be a model of dimension n_i , i = 1,2. Suppose that n_2 is

even,

$$\int_0^\infty f_1(s)^{n_1-1} ds < \infty, \qquad \int_1^\infty \frac{ds}{f_2(s)} < \infty.$$

Then, according to the theorem $\Re^q(M_1) \neq \{0\}$ for $q = 0, n_1, \Re^q(M_2) \neq \{0\}$ when $q = n_2/2$. The Fubini theorem and the identity

$$\Delta_{M_1 \times M_2} = \Delta_{M_1} \otimes I + I \otimes \Delta_{M_2}$$

imply that $\Re(M_1 \times M_2) \neq \{0\}$ when $q = n_2/2, n_2/2 + n_1$.

The above construction cannot be used to produce a counterexample to Conjecture 2. In order that $M_1 \times M_2$, when equipped with the product metric, have nonpositive sectional curvature, M_1 and M_2 must have the same property. This would force the integral $\int_0^\infty f_1(s)^{n_1-1} ds$ to diverge since the volume of complete, simply connected Riemannian manifold of nonpositive sectional curvature is infinite.

I am grateful to E. Calabi and J. Kazdan for many stimulating conversations about L^2 harmonic forms and related matters.

PROOF OF THEOREM. According to a theorem of Andreotti and Vesentini (cf. [dR, Theorem 26]) an L^2 form ω on M is harmonic if and only if it is closed and coclosed. Thus a C^{∞} q-form ω is in $\mathcal{H}^q(M)$ if and only if

$$\int_{M} \omega \wedge *\omega < \infty, \qquad d\omega = 0, \quad d*\omega = 0, \tag{5}$$

where * denotes the duality operator between forms of degree q and n-q. Since $*\omega \wedge *(*\omega) = \omega \wedge *\omega$ for every form ω , * establishes an isomorphism between $\Re^q(M)$ and $\Re^{n-q}(M)$. Let dV denote the volume element of the Riemannian metric of M, and let \langle , \rangle and | | be the pointwise inner product and norm, respectively, of differential forms on M. The global (integrated) inner product and norm are given by

$$(\omega, \eta) = \int_{M} \omega \wedge *\eta = \int_{M} \langle \omega, \eta \rangle dV,$$

$$\|\omega\|^2 = \int_M \omega \wedge *\omega = \int_M |\omega|^2 dV,$$

where ω and η are two forms of equal degrees. Corresponding objects on S^{n-1} equipped with the standard metric will have to be considered. They will be denoted by the same symbols as their counterparts on M with a subscript 0. For example, the volume elements dV and dV_0 of M and S^{n-1} , respectively, are related by $dV = f(r)^{n-1} dV_0 \wedge dr$.

The case (ii) of the theorem is now trivial. If ω is an L^2 harmonic function $d\omega = 0$ by (5), i.e., ω is constant. Constants are in L^2 if and only if the total volume of M is finite, which gives (ii). To study the remaining cases one writes the conditions (5) in terms of geodesic polar coordinates (r, θ) . If ω is a C^{∞} q-form on $M \setminus \{o\}$ of degree $q \neq 0, n$, then

$$\omega = a(r, \theta) \wedge dr + b(r, \theta), \tag{6}$$

where $a(r, \theta)$, $b(r, \theta)$ are smooth forms on S^{n-1} , depending on a parameter r > 0, of degree q - 1 and q, respectively. Formally $a = (-1)^{q-1} \iota(\partial/\partial r)\omega$, $b = \omega - a \wedge dr$, where $\iota(\partial/\partial r)$ is the interior product with the radial vector field $\partial/\partial r$. Of course, a and b can be also regarded as forms on $M \setminus \{o\}$.

In terms of decomposition (6) $*\omega$ can be computed as follows:

$$*\omega = (-1)^{n-p} f^{n-2q+1} *_0 a + f^{n-2q-1} *_0 b dr.$$
 (7)

To prove this formula one uses the fact that * consists essentially of taking orthogonal complement together with the identity

$$*_{\lambda_g^2} = \lambda^{n-2q} *_g, \tag{8}$$

relating duality operators on q-forms for two conformal metrics g and $\lambda^2 g$.

Using (5), (6) and (7) one concludes that for $\omega \in \mathcal{H}^q(M)$ the following conditions hold:

$$\int_{0}^{\infty} \int_{S^{n-1}} (f^{n-2q+1}|a|_{0}^{2} + f^{n-2q-1}|b|_{0}^{2}) dV_{0} dr < \infty,$$

$$d_{0}b = 0, \qquad d_{0}*_{0}a = 0,$$

$$d_{0}a + (-1)^{q} \frac{\partial b}{\partial r} = 0,$$

$$\frac{\partial}{\partial r} (f^{n-2q+1}*_{0}a) + f^{n-2q-1}d_{0}*_{0}b = 0.$$
(9)

Moreover the pointwise norm $|\omega|^2$ is bounded near r = 0, i.e.,

$$|\omega|^2 = f^{-2(q-1)}|a|_0^2 + f^{-2q}|b|_0^2 \le C \text{ for } r \in (0, 1].$$

Apply * to the last equation in (9) and use commutativity

$$\frac{\partial}{\partial r} *_0 = *_0 \frac{\partial}{\partial r}$$

to obtain the following set of conditions satisfied by $\omega = a \wedge dr + b \in \mathfrak{R}(M)$ on $M \setminus \{o\}$

(a)
$$d_0b = 0$$
,
(b) $d_0 *_0 a = 0$,
(c) $d_0a + (-1)^q \frac{\partial b}{\partial r} = 0$,
(d) $\frac{\partial}{\partial r} (f^{n-2q+1}a) + (-1)^q f^{n-2q-1} \delta_0 b = 0$,
(e) $f^{-2(q-1)} |a|_0^2 + f^{-2q} |b|_0^2 \le C$ for $r \in (0, 1]$,
(f) $\int_0^\infty \int_{S^{n-1}} (f^{n-2q+1} |a|_0^2 + f^{n-2q-1} |b|_0^2) dV_0 dr < \infty$,

where δ_0 is the formal adjoint of d_0 on S^{n-1} . Observe now that if $\omega \in \mathcal{H}^q(M)$ and $b \equiv 0$, then $a \equiv 0$. Indeed, if $b \equiv 0$, then, by (10b) and (10c), $a(r, \theta)$ is a harmonic form on S^{n-1} for every fixed r > 0. Since $0 \le \deg a \le n - 2$,

 $a(r, \theta)$ can be nonzero only if $q - 1 = \deg a = 0$, in which case $a(r, \theta)$ is independent of θ . On the other hand, by (10d),

$$\frac{\partial}{\partial r}(f^{n-1}a)=0,$$

i.e., $a = C_1 f^{-(n-1)}$ which blows up at r = 0 contradicting (10e) unless $C_1 = 0$.

Now eliminate $a(r, \theta)$ from the system consisting of equations (10c) and (10d). Thus apply d_0 to (10d) and use commutativity $d_0 \partial / \partial r = (\partial / \partial r) d_0$ to obtain

$$f^{n-2q-1}d_0\delta_0b = \frac{\partial}{\partial r}\left(f^{n-2q+1}\frac{\partial b}{\partial r}\right).$$

Take the inner product (over S^{n-1}) of both sides of this equation with b keeping r > 0 fixed to see that

$$\left(\frac{\partial}{\partial r}\left(f^{n-2q+1}\frac{\partial b}{\partial r}\right),b\right)_0=f^{n-2q-1}(\delta_0 b,\delta_0 b)_0\geq 0.$$

Therefore

$$\frac{d}{dr}\left(f^{n-2q+1}\frac{\partial b}{\partial r},b\right)_{0} = \left(\frac{\partial}{\partial r}\left(f^{n-2q+1}\frac{\partial b}{\partial r}\right),b\right)_{0} + f^{n-2q+1}\left(\frac{\partial b}{\partial r},\frac{\partial b}{\partial r}\right)_{0} \ge 0.$$

By (10e) and (4) $|b|_0^2 = O(r^{2q})$ for small r. Hence

$$\left(f^{n-2q+1}\frac{\partial b}{\partial r},\,b\right)_0=O(r^n).$$

It follows that

$$\frac{d}{dr}(b,b)_0 = 2\left(\frac{\partial b}{\partial r},b\right)_0 > 0$$

for all r > 0, i.e. $||b||_0^2$ is a nondecreasing function of r. Now suppose $b \neq 0$. Since $||b||_0^2$ is monotone and

$$\infty \ge \|\omega\|^2 \ge \|b\|^2 = \int_0^\infty f^{n-2q-1} \|b\|_0^2 dr,$$

the integral $\int_1^{\infty} f^{n-2q-1} dr$ is finite. Thus for $q \neq 0, n$, $\Re^q(M) \neq \{0\}$ implies that $\int_1^{\infty} f^{n-2q-1} dr$ is finite. By duality $\Re^q(M) \cong \Re^{n-q}(M)$, i.e. if $\Re^q(M) \neq \{0\}$, then the two integrals $\int_1^{\infty} f^{n-2q-1} dr$, $\int_1^{\infty} f^{-n+2q-1} dr$ are simultaneously finite. If n = 2q the two integrands are the same. If, on the other hand, $n - 2q \neq 0$ then $(n - 2q - 1)(-n + 2q - 1) = 1 - (n - 2q)^2$. Thus either one of the exponents is equal to zero, or the two exponents have opposite signs. In both cases one of the integrals has to diverge, which proves that $\Re^q(M) = \{0\}$ if $q \neq 0, n/2, n$. This still leaves the possibility that, for n = 2k, $\Re^k(M) \neq \{0\}$ provided $\int_1^{\infty} f^{-1} dr < \infty$. Such is the case and, in fact, $\Re^k(M)$ has infinite dimension. The last assertion will follow from the following:

LEMMA. Let M be a model with the metric $ds^2 = dr^2 + f(r)^2 d\theta^2$. Define

$$R(r) = e^{\int_1^r ds/f(s)}.$$

Then the mapping $F: M \setminus \{o\} \to \mathbb{R}^n \setminus \{o\}$ given (in terms of polar geodesic coordinates (r, θ) on M and polar coordinates on \mathbb{R}^n) by $F(r, \theta) = (R, \theta)$ extends to a C^1 conformal diffeomorphism of M onto an open ball of (possible infinite) radius equal to $\int_1^\infty ds/f(s)$ centered at the origin. Moreover, F is C^∞ on $M \setminus \{o\}$.

REMARK. The lemma is due to Milnor [M] for n=2, in which case F is C^{∞} everywhere. The proof for n>2 is essentially the same and will not be repeated here. If n>2, the restriction of F to every plane through o is C^{∞} . It is likely that F is C^{∞} , but the regularity asserted in the lemma is sufficient for the purpose at hand.

To finish the proof of the theorem assume the lemma and suppose dim M=2k. By (8) the * operator acting on forms of degree k depends only on the conformal structure. Thus all conditions in (5) are conformally invariant. Assume that $\int_1^{\infty} ds/f(s) < \infty$ and let B be the open ball in \mathbb{R}^n of radius $\int_1^{\infty} ds/f(s)$. The space of all C^{∞} k-forms η on \mathbb{R}^n which satisfy the equations $d\eta = 0$, $d*\eta = 0$ (* induced by the standard flat metric) has infinite dimension (e.g., if $h(y_1, y_2, \ldots, y_{k+1})$ is a nonconstant harmonic function on \mathbb{R}^{k+1} , then

$$\eta = d(h(x_k, x_{k+1}, \ldots, x_n) dx_1 \ldots dx_{k-1})$$

satisfies the two equations). Restrictions of such forms to B are clearly in L^2 . Thus the space $\mathcal K$ of k-forms on B satisfying conditions (5) with respect to the flat metric has infinite dimension. By the lemma and the conformal invariance, the space $F^*\mathcal K$ consists of forms ω of degree k which are continuous, square integrable on M, C^{∞} on $M \setminus \{o\}$ and satisfy $d\omega = d*\omega = 0$ on $M \setminus \{o\}$. Standard regularity theorem shows that every $\omega \in F^*\mathcal K$ is in fact C^{∞} and harmonic at every point of M. It follows that F^* establishes an isomorphism between $\mathcal K$ and $\mathcal K^k(M)$ and that $\mathcal K^k(M)$ has infinite dimension.

REFERENCES

[A] M. F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, Astérisque, nos. 32, 33, Société Mathématique de France, Paris, 1976, pp. 43-72.

[C] S. S. Chern, Differential geometry; its past and its future, Actes du Congrès International du Mathématiciens (1970), vol. 1, Gauthier-Villars, Paris, 1971, pp. 41-53.

[GW] R. E. Greene and H. Wu, Function theory on manifolds which possess a pole, preprint.

[M] J. Milnor, On deciding whether a surface is parabolic or hyperbolic, Amer. Math. Monthly 84 (1977), 43-46.

[dR] G. de Rham, Varietés différentiables, formes, courants, formes harmoniques, 2nd ed., Actualités Sci. Indust., no. 1222a, Hermann, Paris, 1960.

[S] J. J. Stoker, Differential geometry, Wiley-Interscience, New York, 1969.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PENNSYLVANIA 19174