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THE GENERATION OF NONLINEAR EQUIVARIANT

DIFFERENTIAL OPERATORS1

ROBERT DELVER

Abstract. Finite generation results are given for the set of smooth nonlin-

ear differential operators: CX(M, N) -> C°°(M, R) of order < k which are

equivariant with respect to the action of a Lie group on the base manifold

M.

1. Introduction. Let G be a Lie group acting by diffeomorphisms ¿>g, g G G,

on a smooth manifold M, N a smooth manifold and let tf)k, k G

{oo, 1, 2, 3, .. . }, denote the real vector space of smooth nonlinear differen-

tial operators of order < k of C°°(A/, N) into C°°(A/, R). The action of G on

M lifts to CX(M, N) by g-f-f» $¡\ f G C°°(A/, N), g G G. Let %

denote the G-equivariant elements of sÙk. Full definitions are given in §2.

There are two equivariance preserving structures on ^ each with its own

generation problem. The first structure is a multiplication: s0k X 6¡)lc -» tf)k,

defined by

% ■ %U) - %U)%U\ f e C<°(M, N). (l.i)

If N = R, a second structure is induced by the composition ^)k  X 6¡)k ->

%%(f) = %{%{f)l f 6 C°°(A/, R). (1.2)

The main results of this paper are two finiteness theorems, one for each of

these structures.

Theorem 1. Let G be a compact Lie group, M a smooth G-manifold of finite

orbit type and N a smooth manifold then, for each k G (0, 1, 2, . . . }, there

exist <£,.tf, G <%% such that $ G % iff f = /((£„ . . ., #,.), /or ío/mí>
/ G C00(R/).

This theorem is based on a theorem of Schwarz [10], the proof is given in

§2.
Let C°°(A/)G denote the G-invariant elements of C°°(A/). A function £:

M->R' is called a finite generator for C°°(A/)G iff CX(M)G = |*C°°(A/).
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We let TG(T(M)) denote the C°°(M)G-module of invariant vector fields on

M. In the case where M is a principal G-bundle finite generators exist both

for C°°(A/)G and for the module TG(T(M)) (Lemmas (3.1) and (3.2)). More-

over, {Xx, . . . , Xn) c rc(7YM)) is a generator for TG(T(M)) iff

{Xx(x), . . ., Xn(x)} generates the vector space TX(M) for all x G M (Lemma

(3.3)). Let N = R.

Theorem 2. Let M be a principal G-bundle with fibration {M, it, B), £:

A/->R' a generator for C°°(A/)C and {X\ . . . , X") a generator for

TG(T(M)). Then

<%k(M)G = {£, (Xa)la]<k}*C"{R' X R"'),

for k > 1.

(Ara)ia|</t denotes the sequence of all Xa with \a\ < k in lexicographical

order and {£, (Xa)M<k}*C°°(R' X R"') is the set of operators of the form

4(r)w<l),a6C»(R'xR"').
In a somewhat different context, problems of this type were studied by Lie

[8], by Tresse [11] and more recently by Kumpera [7].

Thanks are due to Ivan Kupka for some helpful discussion.

2. The verification of Theorem 1. Let Jk(M, N) be the kth jet bundle from

M into N with source map a and target map ß. If P and g are smooth

manifolds, ¡i: P -» M a diffeomorphism, v. N -» g a smooth map, then

(JkH)*: Jk(M,N)-*Jk(P,N) and (Jkv\: Jk(M, N)-*Jk(M, Q) are de-

fined by

(JV)*(o) = #-(«(.)>/' ° M     and     (7M*(o) = /„V ° />

where / represents a.

The action of G on M lifts to a smooth action on Jk(M, N) by

go = (jk<t>g-l)*(o). (2.1)

Let iTk be the canonical projection of Jk+l(M, N) onto Jk(M, N) and put

Dk = C°°(/*(M, N), R). £>„, is the inductive limit as A:->oo of (Dk,tr^),

where ir^ is the map from Z\ to Dk+, given by-n^F = F ° vk.

The set of smooth nonlinear differential operators from Cac(M, N) into

C°°(Af, R) of order < k, k G {oo, 1, 2, 3, . . . } is denoted by <$*. fe^

iff it factorizes as F ° jk, for some F E Dk. In this case F is called the symbol

of *& or F = sym •#. The G-equivariant elements of 6îlk are denoted by *3)£,

the G-invariant elements of Dk by DG.

(2.2) Proposition. % E % iff sym ^ G £)tG.

Proof. Let F be the symbol of <5. If F is G-invariant, / G C^M, N),

x E M, then

9(g-f) (x) = F(jkg-f) = {g-lF){j*->j) = F(7g*-,J)
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Conversely, if S is G-equivariant and a G Jk(M, N) with a(o) = x is repre-

sented by/then

g ■ F(o) = F{jk-Kxg-' •/) = <S(g-> -f)(g-1 ■ x)

= (g-1-Sf)(g-l-x) = Sf(x) = F(a).

(2.3) Lemma. Let G be a compact Lie group and M a smooth G-manifold with

orbit structure of finite type (see [9]), then the induced action on Jk(M, N) is of

finite orbit type as well.

Proof. If N = R" and M is a linear G-space then Jk(M, N) is a linear

G-space which is of finite orbit type. In the general case we can assume by

the Whitney and Mostov embedding theorems that N is smoothly embedded

in R" and M is smoothly equivariantly embedded in a Euclidean G-space R"\

It will suffice to show that Jk(M, N) is equivariantly embedded in

Jk(Rm, R"). Let it: Z -> M be an equivariant tubular neighbourhood of M in

Rm. Since Z is an open G-invariant set in Rm, Jk{Z, R") is an open G-sub-

manifold of Jk(Rm, R"), so we need only show that Jk(M, N) is equivariantly

embedded in Jk(Z, R").

Let i be the inclusion map of N in R". Clearly, (Jki)m: Jk(M, N) -»

Jk(M, R") and (/V)*: Jk(M, Rn)-*Jk(Z, R") are equivariant embeddings.

(Jkir)* ° (•/*»)* is the desired equivariant embedding of Jk(M, N) into
Jk(Z,Rn).   a

Thanks are due to the referee of an earlier version of this section for

shortening my original proof.

By Lemma (2.3), the conditions of Theorem 1 imply that the G-manifold

Jk(M, N) is of finite orbit type. By a theorem of G. W. Schwarz [10, Theorem

2], there exist Ax, ,.., A, e Dk, such that F G DkG iff F = f(Av . . . , A,), for

some/ G C°°(R', R). Hence, the operators &,, 1 < / < i, may be chosen as

those with sym &¡ = A,.

3. The verification of Theorem 2. In this section, M is a smooth principal

G-bundle with corresponding fibration {M, m, B}. m = dim M,a = dim G

and b = m — a = dim B.

(3.1) Lemma. There exists an invariant generator £: M -» R', / < 2b + I, for

C*(M)G.

Proof. By Whitney's embedding theorem there exists an embedding f of B

into Rp,p < 26 + 1. Since CX(M)G = 7r*C°°(5), we may choose £ - f o w,

D
The action of G on M lifts in the usual way to T{M) by g • (x, v) = (g •

x, g • v), where x G M, v G TX(M), g ■ x = 4>g(x) and g • v = </¿>g(x)t>. As in

§1, TG(T(M)) denotes the C00(Af')G-module of G-invariant vector fields on

M.

(3.2) Lemma. There exists a finite generator for TG(T(M)).
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Proof. For each x E M, let HX(M) be the horizontal tangent space to M

at x with respect to a given principal connection <? on M and let VX(M) be

the vertical tangent space at x. In T(M) we consider the subbundles

H(M) = U xeM HX(M) and V(M) = U xeM VX(M). Since T(M) = #(M)

© V(M), we need only show that finite generators exist for TG(H(M)) and

TG(V(M)), the C°c(M)G-modules of G-invariant horizontal and vertical vec-

tor fields on M.

First we construct a finite generator for TG(H(M)). By Whitney's embed-

ding theorem we may assume that B is embedded in R^, p < 2b + 1.

Projecting the canonical basis of T(RP) onto T(B) we obtain a generator for

T(B). The horizontal liftings with respect to 9 of the elements of this

generator constitute a generator for TG(H(M)).

V(M) is a G-subbundle of the G-vector bundle T(M). The action of G on

K(Af ) is given by

g-(x,v) = (g-x,g-v), (3.3)

where (x, o) G M X VX(M).

Let Lie(G) be the Lie algebra of G. For / G Lie(G), let the vertical vector

field / on M be defined by

T(x) = ft(e"(x)) M. (3.4)
■ o

We define a left G-action on M X Lie(G) by

g-(x,l) = (g-x,Aà(g)l) (3.5)

where Ad(g) is the adjoint action of g G G on Lie(G). With this action,

M X Lie(G) is isomorphic, as a G-vector bundle, to V(M). An isomorphism

is given by to: M X Lie(G) -» V(M):

u(x,l) = (x,ï(x)). (3.6)

We check that a is G-equivariant:

<o(g- (x, I)) = o>(gx, Ad(g)l) = (g-x, Ad(g) l(g-x))

= (g-x,g-T(x)) = g-a(x,l),

for all g G G and (x, l) E M X Lie(G).

Let E = M xG Lie(G) be the vector bundle over B of fiber type Lie(G)

associated with the principal bundle M and the adjoint action of G on Lie(G)

[4, XVI, 16.14.7]. In our case E is the quotient of M x Lie(G) by the action

defined by (3.5). The invariant vertical vector fields on M are in bijective

correspondence to the sections of E, (see e.g. [6, Theorem 4.8.1]). Since the

C°°(5)-module of cross sections of E is finitely generated, [5, p. 76, Lemma

2], the same is true for the C°°(A/)G-module TG(V(M)). This completes the

proof.

(3.7) Lemma. {X\ . . . , X") c TG(T(M)) is a generator for TG(T(M)) iff

{Xx(x), . . ., X"(x)} generates the vector space Tx(M),for all x E M.



NONLINEAR EQUIVARIANT DIFFERENTIAL OPERATORS 405

Proof. Clearly a generator of TG(T(M)) generates the individual tangent

spaces. To prove the converse, let

{X\...,Xn} cTG(T(M)) (3.8)

be such {X\x), . . . , X"(x)} generates TX(M), for all x G M. For each

x G X we may choose a subset of (3.8)

{.*>'<*>,..., JSr^*>} (3.9)

which, evaluated at x, is a basis for TX(M). Being a basis is an open condition

so there exists an open neighbourhood 0X of x such that (3.9), evaluated at

any v G 0X is a basis for Ty(M). Because g • X'{x) = A"'(g • x), x G Af and

1 < / < ft, and since the action of G on T(M) preserves linear independence

(3.9), evaluated at v is a basis for Ty(M) for all v G G- 0X = ^"'(t/J, where

17* = »riOJ.

Let { Va)aeI be a locally finite refinement of the covering {Ux}xeM of B.

By the above construction, for each « £ /, we have a subset of m elements of

(3.8).
{XJ"W, ..., XJ'<m)), (3.10)

which, evaluated at any x G ir~\Va), is a basis for TX(M). Hence any

Y G TG(T(M)) is of the form

m

Y(x) = "2  aUi)(x)X^\x),       xe«-\Va), (3.11)
i—i

where am G C °°(w ~~ '( VJ)G, I < i < m,a S I.

Let {/„}ae/ be a partition of unity subordinate to {Va}aeI with supp/a c

Va, Va G /. Then

m

y- 2 /„°f s a«.«*"0 (3.10)

which may be written as

Y= 2  6^', (3.11)

with Z>, G C°°(M)G, 1 < / < »i, since each 6, is locally a finite sum of

functions (/a ° ir)oj (() which are smooth and G-invariant.

Proof of Theorem 2. First we consider the case where M is a trivial

principal bundle: M = V x G. Moreover we assume that F is an open set of

R*. For k G {1, 2, 3, ... } let /ift: Jk(V x G)->/£x{e)(F x G) be defined

by

Ak(a) = g~l-a     if a(o) = (v, g). (3.12)

Then {Jk(V X G), Ak, Jkx{e](V X G)} is a fibration of the principal G-bun-

d\eJk(V X G), so

C°°(y*(F X G))c = ^^»(/^{^(K X G)). (3.13)
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The mapping Bk, defined by

**(>W)-(fcA.>(/•'»)). (3-14)
where/ G C°°(R* X G) and tb is the translation in R* X G, given by tb(a, h)

= (a + b, h), with b E R* and (a, A) G R* X G, is a diffeomorphism of

/¿»x{e)(R* X G) onto R* X Jf0¡e)(Rb X G). The space J^e)(Rb X G) carries a

natural linear structure. By choosing a basis it is identified with R^, N =

dim Jk0>e)(R* X G) and we may consider 5¿ as a diffeomorphism of

/^x{e)(R* X G) onto R* X R". From (3.13) we obtain

C°(Jk(V X G))G = (5* oyifc)*c"(F X R"). (3.15)

The canonical projections of R* X R^ on its first and second factors are

denoted by pr, and pr2. Let %: CX(V X G)-» C°°(F X G, R") be the

G-equivariant linear operator defined by

9k-pr2oBkoAkoj* (3.16)

and let it' be the canonical projection of F X G onto V. From Proposition

(2.2) and formula (3.15) it follows that & E fyk(V X G) iff there exists some

a E C°°(R* X R") such that, for all/ G C°°(F X G),

&f = a(pr, °Bk°Ako jk, pr2 ° Bk ° Ak ° jk) (3.17)

which equals a (it', <$kf) = a(7r', ^)/. Hence

%{V XG) = (*', ^)*C°°(Rft X R"). (3.18)

Let "3^, 1 < / < N, denote the ith component of <$k. Clearly each % is a

linear G-equivariant differential operator onC°°(F X G).

It is easy to see that there exists an invariant basis

{Y\ ...,Ym) (3.19)

for T(V X G) (m = dim K X G). From the linearity of (3'k it follows that

each ÇPJt, 1 < / < N, can be written uniquely as

9* -   2   a"y".       a" G C°°(F X G), (3.20)

(see e.g. [12, Theorem 1.1.2]). It follows from the G-equivariance of Wk and of

the operators Y", \a\ < k, that the coefficients a", \a\ < k, 1 < /' < N, are

G-invariant. Thus we get the 9'k in the form

% =   2   (b,a • O^",       Ki<N, (3.21)

where è/" G C°°(F), |a| < A:, 1 < / < A/.

Substituting (3.21) into (3.18) we obtain that 3, E <$>G(F X G) iff there

exists some a E C°°(R* X R*) such that

&f-a(v',   2    (ôfoffW,-.-.   2   (^°7T')ra/l      (3.22)
V \a\<k \a\<k I

for all/ G CX(V X G). The right-hand side of (3.22) is just a function of it'
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and the operators Y", \a\ < k. Conversely, any such function represents an

element of <>DC(K X G). Hence,

*DG(K x G) = (77', (y-),„|<*)C"(R* x RTk). (3.23)

Let {£/e}eE/, where / is some index set, be a locally finite atlas for B such

that the principal bundles Me induced by M over Ue, e G /, are trivializable.

Then for each e G / there exists an isomorphism \ of Mt onto the product

bundle Vt X G, where Ve c R6 is the parameter domain of Ue.

We define a bijection A* of <$£( F£ X G) onto ^(AQ by

(A.ÉB)/ = \:(&(f o V ')).      / 6 C-(J»f,). (3.24)

Let 7re' be the canonical projection of F, X G onto Fe and let {Yel, . . ., 7™}

be a G-invariant basis for T(Ve X G). From (3.23) and (3.24) we obtain that

S G ^(AQ iff

% =Ae(<?«,(yea)|a|<J), (3.25)

for some q G C°°(R' X Rm'). Or

S =?«°M(A£r£)aW). (3.26)

Let 4: Aie -> R' and {A,1, . . . , A^1} be the restrictions of the given genera-

tors forC°°(Af)c and rG(T(M)) to Mt. Then

<°\ = d» i, (3.27)

for some d G C°°(R', R*). Since {X{(x).X{(x)} generates Tx(Mt), \fx G

Afe, it follows from Lemma (3.7) that

KYI- f  W«0*¿ (3.28)
7-1

where e? G C°°(R'), 1 < i < m, 1 < j < n. After substitution of (3.27) and

(3.28) into (3.26) it is easy to see that we may write this equality as

» - Ki. (*.*W). (3-29)

for some r G C00^', R"*).

Let {«e}eS/ be a partition of unity on $ subordinate to {Ue}e£l with

supp(t/e) C t/„ e e /. For a given f G ^(Af) let fe G ^(AQ be the

restriction of 5" to C°°(Afe). (F, is defined by symS, = symf |y*(We).) By (3.29)

there exists a re G C°°(R' X R"*) such that

*. -'.(4. WW. (3-3°)
So

y- 2 K"K(4.W)i«i<*). (3-31)
ee/

Since

(£/. - 7r)re(4, (Jf«)w<fc) = (í/. o -)/•,&(*«)w<*)

it follows from (3.31) that

^ = <*(£,(*" W), (3.32)
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for some a G C°°(R' x R"*). Conversely, (3.32) implies that <5 G tyG(M).

This completes the proof.
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