AN AXIOMATIC PROOF OF STIEFEL'S CONJECTURE

JOHN D. BLANTON AND CLINT MCCRORY

ABSTRACT. Stiefel's combinatorial formula for the Stiefel-Whitney homology classes of a smooth manifold is proved, by verifying that the classes defined by his formula satisfy axioms which characterize the Stiefel-Whitney classes.

1. Introduction. In [2] there were presented axioms for the homology duals to the Stiefel-Whitney classes of smooth manifolds. We show here that the homology classes defined by the combinatorial formula of Stiefel [7, p. 342] satisfy these axioms.

Halperin and Toledo published the first detailed proof of Stiefel's conjecture [5]. Earlier proofs were outlined by Whitney [9] and by Cheeger [3]. A proof for mod 2 homology manifolds, using Steenrod operations, was found by Ravenel and McCrory (unpublished). An axiomatic proof for mod 2 homology manifolds has been given recently by L. Taylor [8], using the method of [2] and a classifying space of Quinn.

Let \mathfrak{N} be the category whose objects are C^{∞} separable Hausdorff manifolds (without boundary) and whose morphisms are open embeddings, that is $f: M \to N$ is a morphism of \mathfrak{N} if M and N are objects of \mathfrak{N} and f is a diffeomorphism of M onto an open subset of N.

Let \overline{H}_* be the homology functor defined using infinite (but locally finite) chains, either singular or simplicial. $\overline{H}_*(\cdot; \mathbb{Z}/2)$ is a contravariant functor on the category \mathfrak{N} , since an open embedding $f: M \to N$ induces a restriction homomorphism [2]

$$f^* \colon \overline{H}_*(N; \mathbb{Z}/2) \to \overline{H}_*(M; \mathbb{Z}/2).$$

The total Stiefel homology class

$$W'(M) = W'_0(M) + W'_1(M) + \cdots + W'_m(M)$$

where m is the dimension of M, satisfies the following axioms:

- (1) For every $M \in \text{Obj}(\mathfrak{N})$ and every integer $i, 0 \le i \le m$, there is a Steifel homology class $W'_i(M) \in \overline{H}_{m-i}(M; \mathbb{Z}/2)$.
 - (2) If $f: M \to N$ is a morphism of \mathfrak{M} , then $f^*W'(N) = W'(M)$.
 - $(3) W'(M \times N) = W'(M) \times W'(N).$
 - (4) For every nonnegative integer i there exists a positive even integer

Received by the editors April 11, 1978 and, in revised form, January 19, 1979.

AMS (MOS) subject classifications (1970). Primary 57D20, 55F40; Secondary 57C99.

Key words and phrases. Stiefel-Whitney class, C^{∞} manifold, triangulation, barycentric subdivision.

m > i such that

$$W_i'(P_m(\mathbf{R})) = \binom{m+1}{i} x^{i}.$$

Here $P_m(\mathbf{R})$ is the real projective space of dimension m and x^n is the unique nonzero element in $\overline{H}_{m-i}(P_m(\mathbf{R}); \mathbf{Z}/2)$.

In [2] it is proved that there exists a unique homology class W'(M) for each $M \in \text{Obj}(\mathfrak{M})$ such that the axioms (1)-(4) are satisfied.

Following Halperin and Toledo [5], we let (K, φ) denote a smooth triangulation of M, and let K' denote the first barycentric subdivision of K. An infinite simplicial k-chain on M will mean a formal infinite sum $\sum \lambda_{\sigma} \sigma$ where σ is a k-simplex of K' and $\lambda_{\sigma} \in \mathbb{Z}/2$. These chains form a complex $C_{*}(M)$ from which $\overline{H}_{*}(M; \mathbb{Z}/2)$ is defined.

Stiefel [7] conjectured that the infinite chain $s_k(M)$ which is the sum of all the k-simplexes of K' represents the Stiefel homology class $W'_{n-k}(M)$.

We will see below that the chains $s_k(M)$ are cycles, so their homology classes satisfy axiom (1). (This was proved by Akin [1] and by Halperin and Toledo [5].) Since Halperin and Toledo [6], Milnor, and others have shown that Stiefel's combinatorial classes satisfy axiom (3), we prove only that these classes satisfy axioms (2) and (4).

REMARK. Taylor [8] does not prove axiom (2) (his axiom (A1)) for the combinatorial Steifel-Whitney classes! On the other hand, he shows that axiom (4) can be replaced by simpler axioms (his axioms (A3)-(A6)).

2. Axiom (2) is satisfied. If M is a triangulated PL m-manifold with boundary, let $s_k(M)$ be the sum of all the k-simplexes in the first barycentric subdivision of M.

LEMMA 1 (CF. [1, Proposition 1(b)]). $\partial s_{k}(M) = s_{k-1}(\partial M)$.

PROOF. Let $\alpha = \langle \hat{\sigma}_0, \ldots, \hat{\sigma}_{k-1} \rangle$ be a (k-1)-simplex in the first bary-centric subdivision, where $\sigma_0 < \cdots < \sigma_{k-1}$ are simplexes in the given triangulation, and $\hat{\sigma}_i$ is the barycenter of $\hat{\sigma}_i$. The coefficient of α in $s_k(M)$ is the mod 2 Euler number of $\text{Link}(\sigma_{k-1})$ (cf. [1, p. 342]). If $\alpha \subset \text{Int } M = M \setminus \partial M$ then $\text{Link}(\sigma_{k-1})$ is a sphere. If $\alpha \subset \partial M$ then $\text{Link}(\sigma_{k-1})$ is a disc. \square

Let $W'_i(M) \in \overline{H}_{m-i}(M, \partial M; \mathbb{Z}/2)$ be the class of $s_{m-i}(M)$.

PROPOSITION 1 (CF. [1, PROPOSITION 2]). If $f: M \to N$ is a PL homeomorphism of triangulated PL manifolds, $f_*W_i'(M) = W_i'(N)$.

PROOF. Let M_f be the mapping cylinder of f. M_f is a PL manifold with $\partial M_f = M \cup N$. The given triangulations of M and N can be extended to a triangulation of M_f . Thus, by the lemma, $s_k(M)$ and $s_k(N)$ are homologous in M_f . Let $r: M_f \to N$ be the canonical homotopy equivalence. Since r|M = f, $f_*W'_{m-k}(M) = W'_{m-k}(N)$. \square

Therefore, by the Whitehead triangulation theorem, we get a well-defined class $W'_i(M) \in \overline{H}_{m-i}(M, \partial M; \mathbb{Z}/2)$ for any smooth m-manifold M with

boundary. Let $W_i(M) \in H^i(M; \mathbb{Z}/2)$ be the Poincaré dual class, and let

$$W(M) = W_0(M) + W_1(M) + \cdots + W_m(M) \in H^*(M; \mathbb{Z}/2).$$

PROPOSITION 2. (1) If $f: M \to N$ is a diffeomorphism, $f^*W(N) = W(M)$,

- (2) $W(\operatorname{Int} M) = W(M)|\operatorname{Int} M$,
- (3) $W(\partial M) = W(M)|\partial M$.

PROOF. (1) follows from Proposition 1, and (3) from the lemma. For (2), embed M in the thickened manifold $M_1 = M \cup (\partial M \times [0, \infty))$. Clearly $W(M) = W(M_1)|M$. Applying (3) to the manifold ((Int M) × {0}) \cup (M_1 × (0, 1]), the conclusion follows. \square

By definition of the map f^* in homology, axiom (2) for W' is a corollary of the following theorem.

THEOREM 1. If $f: M \to N$ is a diffeomorphism of M onto an open subset of N, then $f^*W(N) = W(M)$.

PROOF. By (1) of Proposition 2 we can assume f is an inclusion. By (2) we can assume M and N have no boundary. Applying (3) to the manifold $(M \times \{0\}) \cup (N \times (0, 1])$, the conclusion follows. \square

Properties (1)-(3), the proof of (2), and the proof of the theorem are taken from unpublished notes of John Milnor.

3. Axiom (4) is satisfied. Let

$$\Sigma^{m} = \{(x_{1}, \ldots, x_{m+1}) \in \mathbb{R}^{m+1} | |x_{1}| + \cdots + |x_{m+1}| = 1\},\$$

a polyhedral *m*-sphere. Σ^m has a canonical triangulation whose vertices are the intersections of Σ^m with the coordinate axes. Radial projection of Σ^m onto

$$S^{m} = \{(x_{1}, \ldots, x_{m+1}) \in \mathbb{R}^{m+1} | (x_{1})^{2} + \cdots + (x_{m+1})^{2} = 1\}$$

gives a smooth triangulation of the standard m-sphere. Let Π^m be the cell complex obtained from Σ^m by identifying x with -x for all $x \in \Sigma^m$. Then the first barycentric subdivision $\Pi'^m = K$ is a simplicial complex which gives a smooth triangulation (K, ϕ) of real projective m-space $P_m(\mathbb{R})$.

PROPOSITION 3. $W'_i(P_m(\mathbf{R}))$ is represented by the sum of all the (m-i)-simplexes of the triangulation K.

PROOF. By definition, $W'_i(P_m(\mathbb{R}))$ is represented by the sum of all the (m-i)-simplexes of the first barycentric subdivision K'. Although K is not the barycentric subdivision of a triangulation, it is the barycentric subdivision of the regular cell complex Π^m whose cells are simplexes. The arguments of Lemma 1 and Proposition 1 apply without change to show that $s_{m-i}(K)$ is homologous to $s_{m-i}(\Pi^m)$. \square

REMARK. This proposition also follows from [6, Proposition (i), p. 243].

Each k-cell of the m-sphere Σ^m lies in a (k+1)-dimensional linear subspace of \mathbb{R}^{m+1} defined by the vanishing of m-k coordinates of \mathbb{R}^{m+1} . For

each such linear subspace \mathbb{R}_{i}^{k+1} , let

$$\Sigma^m \cap \mathbf{R}_j^{k+1} = \Sigma_j^k,$$

and let Π_i^k be the image of Σ_i^k in Π^m . There are

$$\binom{m+1}{k+1} = \binom{m+1}{m-k}$$

such k-dimensional projective subspaces Π_i^k in Π^m .

Let $t_k(\Pi^m)$ be the chain of k-simplexes of K which are not in the barycentric subdivision of some Π_i^k .

PROPOSITION 4. The chain $t_k(\Pi^m)$ is a boundary, $0 \le k < m$.

PROOF. We shall show that $t_k(\Pi^m)$ is the sum of an even number of mutually homologous k-cycles. Each simplex of $t_k(\Pi^m)$ is contained in a unique k-dimensional projective subspace Λ of $P_m(\mathbf{R})$. We will see that Λ is a subcomplex of K. Thus if $c(\Lambda)$ is the sum of all the k-simplexes of Λ , then $c(\Lambda)$ is a cycle representing the generator of $H_k(P_m(\mathbf{R}); \mathbb{Z}/2)$. Furthermore, the k-simplexes of Λ all belong to $t_k(\Pi^m)$, so $t_k(\Pi^m)$ is the sum of all the cycles $c(\Lambda)$ determined in this way. Finally we will show that there are an even number of such cycles $c(\Lambda)$.

Let σ be a simplex of $t_k(\Pi^m)$, and let s be one of the two k-simplexes of the barycentric subdivision of Σ^m which correspond to σ . Let L be the (k+1)-dimensional linear subspace of \mathbb{R}^{m+1} containing s. The image of $L \cap S^m$, under the canonical map $S^m \to P_m(\mathbb{R})$, is the subspace Λ determined by σ .

For i = 1, ..., m + 1, let $\pm v_i$ be the vertex of Σ^m corresponding to $\pm e_i$, where e_i is the *i*th standard basis vector of \mathbb{R}^{m+1} . Then the barycentric coordinate corresponding to $\pm v_i$ in Σ^m is $\pm x_i | \Sigma^m$, where x_i is the *i*th coordinate function of \mathbb{R}^{m+1} .

Let S be the simplex of Σ^m which carries s. Since s is not in the barycentric subdivision of the k-skeleton of Σ^m , we have dim S > k. Let $I = \{i | \pm v_i \text{ is a vertex of } S\}$, and define $\varepsilon: I \to \{+1, -1\}$ so that $\varepsilon(i)v_i$ is a vertex of S for each $i \in I$. Now each vertex w of s is the barycenter of some face T(w) of S. Let w_1, \ldots, w_{k+1} be the vertices of s, ordered so that $T(w_i)$ is a face of $T(w_j)$ for i < j. Define a partition $J = \{J_0, \ldots, J_{k+1}\}$ of the set $\{1, \ldots, m+1\}$ as follows. Let $J_0 = \{1, \ldots, m+1\} - I$, $J_1 = \{i \in I | \varepsilon(i)v_i \text{ is a vertex of } T(w_j)\}$, and for $p = 2, \ldots, k+1$, let $J_p = \{i \in I | \varepsilon(i)v_i \text{ is a vertex of } T(w_p)\}$ but not of $T(w_{p-1})$. A dimension count shows that the subspace L of \mathbb{R}^{m+1} spanned by the vertices of s is given by the equations

$$\begin{cases} x_i = 0, & i \in J_0, \\ \varepsilon(i)x_i = \varepsilon(j)x_j, & i, j \in J_p, p = 1, \dots, k+1. \end{cases}$$
 (*)

Let $|J_p|$ denote the number of elements of J_p . We have $|J_0| = (m+1) - (\dim S + 1) < m - k$. A partition $J = \{J_0, \ldots, J_{k+1}\}$ of $\{1, \ldots, m+1\}$

with $|J_0| < m - k$ will be called *allowable*. Any allowable partition J of $\{1, \ldots, m+1\}$, together with a function ϵ : $J_1 \cup \cdots \cup J_p \to \{+1, -1\}$, defines a (k+1)-dimensional subspace L of \mathbb{R}^{m+1} by the equations (*). The set $L \cap \Sigma^m$ is a subcomplex of the barycentric subdivision Σ'^m , so the corresponding space $\Lambda \subset P^m(\mathbb{R})$ is a subcomplex of K. Since $|J_0| < m - k$, each simplex of $L \cap \Sigma'^m$ is carried by a simplex S of Σ^m with dim S > k, so all the k-simplexes of Λ belong to $t_k(\Pi^m)$, as desired.

It remains to show that there are an even number of such projective subspaces Λ . For each allowable partition J there is at least one p such that $|J_p| > 1$, since $|J_0| < m - k$. For each allowable J, choose such a p, and choose $i_0 \in J_p$. For each Λ corresponding to the partition J and the function ε , let Λ' be the subspace corresponding to J and the function ε' defined by $\varepsilon'(i) = \varepsilon(i)$ for $i \neq i_0$ and $\varepsilon'(i_0) = -\varepsilon(i_0)$. Then $\Lambda' \neq \Lambda$ and $(\Lambda')' = \Lambda$. The existence of this involution $\Lambda \mapsto \Lambda'$ shows that there are an even number of subspaces Λ corresponding to each allowable partition J, so there are an even number of Λ in all. \square

THEOREM 2. $W'_{i}(P_{m}(\mathbf{R})) = {m+1 \choose i} x'^{i}$.

PROOF. Let k=m-i. By Proposition 3, $W_i'(P_m(\mathbf{R}))$ is represented by $s_k(\Pi^m)$, the sum of all the k-simplexes in the barycentric subdivision $\Pi'^m = K$. Let $s_k(\Pi_j^k)$ be the sum of all the simplexes of K in Π_j^k . Since Π_j^k is a k-dimensional projective space, $s_k(\Pi_i^k)$ represents the generator x'^i of $H_k(P_m(\mathbf{R}); \mathbf{Z}/2)$. But

$$s_k(\Pi^m) = \sum_{j=1}^l s_k(\Pi_j^k) + t_k(\Pi^m), \qquad l = \binom{m+1}{i},$$

and $t_k(\Pi^m)$ is homologous to zero by Proposition 4. \square

Theorem 2 implies axiom (4) for all integers $i \le m$. Theorem 2 has been proved independently by Goldstein and Turner [4].

REFERENCES

- 1. E. Akin, Stiefel-Whitney homology classes and bordism, Trans. Amer. Math. Soc. 205 (1975), 341-359.
- 2. J. Blanton and P. Schweitzer, S.J., Axioms for characteristic classes of manifolds, Proc. Sympos. Pure Math., vol. 27, Amer. Math. Soc., Providence, R. I., 1975, pp. 436-443.
- 3. J. Cheeger, A combinatorial formula for Stiefel-Whitney classes, Topology of Manifolds, J. C. Cantrell and C. H. Edwards (eds.), Markham Publishing Co., Chicago, Ill., 1970, pp. 470-471.
- 4. R. Goldstein and E. C. Turner, Stiefel-Whitney homology classes of quasi-regular cell complexes, Proc. Amer. Math. Soc. 64 (1977), 157-162.
- 5. S. Halperin and D. Toledo, Stiefel-Whitney homology classes, Ann. of Math. 96 (1972), 511-525.
- 6. _____, The product formula for Stiefel-Whitney homology classes, Proc. Amer. Math. Soc. 48 (1975), 239-244.

- 7. E. Stiefel, Richtungsfelder und Fernparallelismus in n-dimensonalen Manigfaltigkeiten, Comment. Math. Helv. 8 (1936), 305-353.
- 8. L. Taylor, Stiefel-Whitney homology classes, Quart. J. Math. Oxford Ser. (2) 28 (1977), 381-387.
- 9. H. Whitney, On the theory of sphere bundles, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 148-153.

DEPARTMENT OF MATHEMATICS, St. John Fisher College, Rochester, New York 14618

DEPARTMENT OF MATHEMATICS, BROWN UNIVERSITY, PROVIDENCE, RHODE ISLAND 02912