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AN AXIOMATIC PROOF OF STIEFEL'S CONJECTURE

JOHN D. BLANTON AND CLINT MCCRORY

Abstract. Stiefel's combinatorial formula for the Stiefel-Whitney homology

classes of a smooth manifold is proved, by verifying that the classes defined

by his formula satisfy axioms which characterize the Stiefel-Whitney classes.

1. Introduction. In [2] there were presented axioms for the homology duals

to the Stiefel-Whitney classes of smooth manifolds. We show here that the

homology classes defined by the combinatorial formula of Stiefel [7, p. 342]

satisfy these axioms.

Halperin and Toledo published the first detailed proof of Stiefel's conjec-

ture [5]. Earlier proofs were outlined by Whitney [9] and by Cheeger [3]. A

proof for mod 2 homology manifolds, using Steenrod operations, was found

by Ravenel and McCrory (unpublished). An axiomatic proof for mod 2

homology manifolds has been given recently by L. Taylor [8], using the

method of [2] and a classifying space of Quinn.

Let 911 be the category whose objects are C°° separable Hausdorff mani-

folds (without boundary) and whose morphisms are open embeddings, that is

/: M -» N is a morphism of 911 if M and N are objects of 9H and / is a

diffeomorphism of M onto an open subset of .¡V.

Let H\ be the homology functor defined using infinite (but locally finite)

chains, either singular or simplicial. H^{ • ; Z/2) is a contravariant functor on

the category 911, since an open embedding/: AÍ-» N induces a restriction

homomorphism [2]

f:H,(N; Z/2) -*Sm(M; Z/2).

The total Stiefel homology class

W\M) = W¿(M) + W[{M) + • • • + W^(M)

where m is the dimension of M, satisfies the following axioms:

(1) For every M G ObjCDlt) and every integer i, 0 < i < m, there is a

Steif el homology class W¡'(M) G H^^M; Z/2).

(2) If/: M -► N is a morphism of 9H, then/* W'(N) = W'(M).

(3) W'(M X N) = W'(M) X W'(N).
(4) For every nonnegative integer / there exists a positive even integer
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m > i such that

rV!(Pm(R)) = (m + l)x".

Here Fm(R) is the real projective space of dimension m and x" is the unique

nonzero element in Hm_¡(Pm(R); Z/2).

In [2] it is proved that there exists a unique homology class W\M) for each

M E ObjCDIL) such that the axioms (l)-(4) are satisfied.

Following Halperin and Toledo [5], we let (K, qo) denote a smooth triangu-

lation of M, and let K' denote the first barycentric subdivision of K. An

infinite simplicial /c-chain on M will mean a formal infinite sum lL\o where a

is a /c-simplex of K' and \ E Z/2. These chains form a complex C,(Af ) from

which H,(M; Z/2) is defined.

Stiefel [7] conjectured that the infinite chain sk(M) which is the sum of all

the À>simplexes of K' represents the Stiefel homology class W^_k(M).

We will see below that the chains sk(M) are cycles, so their homology

classes satisfy axiom (1). (This was proved by Akin [1] and by Halperin and

Toledo [5].) Since Halperin and Toledo [6], Milnor, and others have shown

that Stiefel's combinatorial classes satisfy axiom (3), we prove only that these

classes satisfy axioms (2) and (4).

Remark. Taylor [8] does not prove axiom (2) (his axiom (Al)) for the

combinatorial Steif el-Whitney classes! On the other hand, he shows that

axiom (4) can be replaced by simpler axioms (his axioms (A3)-(A6)).

2. Axiom (2) is satisfied. If M is a triangulated PL w-manifold with

boundary, let sk(M) be the sum of all the &-simplexes in the first barycentric

subdivision of M.

Lemma 1 (cf. [1, Proposition 1(b)]). dsk(M) = sk_x(dM).

Proof. Let a = <ô0, . . . , âk_x} be a (k — l)-simplex in the first bary-

centric subdivision, where a0 < ■ ■ ■ < ak_x are Simplexes in the given tri-

angulation, and ô, is the barycenter of 6¡. The coefficient of a in sk(M) is the

mod 2 Euler number of Link(a*_,) (cf. [1, p. 342]). If a c Int M = M \ dM

then Link(at_,) is a sphere. If a c 3M then Link(a^_,) is a disc.   □

Let W!(M) G H^^M, 3A/; Z/2) be the class of sm_i(M).

Proposition 1 (cf. [1, Proposition 2]). ///: Af-»JV is a PL homeomor-

phism of triangulated PL manifolds, /„ W¡(M) = W[(N).

Proof. Let Mf be the mapping cylinder of /. Mf is a PL manifold with

dMj = M \j N. The given triangulations of M and N can be extended to a

triangulation of My. Thus, by the lemma, sk(M) and sk(N) are homologous in

Mf. Let r: Mf-* N be the canonical homotopy equivalence. Since r\M — f,

Therefore, by the Whitehead triangulation theorem, we get a well-defined

class  W¡(M) E Hm_j(M, 3M; Z/2) for any smooth m-manifold M with
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boundary. Let W¡(M) G H\M; Z/2) be the Poincaré dual class, and let

W(M) = W0(M) + Wi(M) + • ■ ■ + Wm(M) G H*(M; Z/2).

Proposition 2. (1) ///: M -h> N is a diffeomorphism, f* W(N) = W(M),

(2) W(lnt M) = W(M)|Int M,

(3) W(dM) = W(M)\dM.

Proof. (1) follows from Proposition 1, and (3) from the lemma. For (2),

embed M in the thickened manifold M, = M u (9M X [0, oo)). Clearly

W(M) = W{MX)\M. Applying (3) to the manifold ((Int M) X {0}) u (Ai, X

(0, 1]), the conclusion follows.   □

By definition of the map/* in homology, axiom (2) for W is a corollary of

the following theorem.

Theorem 1. ///: M ^ N is a diffeomorphism of M onto an open subset of N,

then /* W(N) = W(M ).

Proof. By (1) of Proposition 2 we can assume/is an inclusion. By (2) we

can assume M and N have no boundary. Applying (3) to the manifold

(Af X {0}) u(JVX (0, 1]), the conclusion follows.   □

Properties (l)-(3), the proof of (2), and the proof of the theorem are taken

from unpublished notes of John Milnor.

3. Axiom (4) is satisfied. Let

2- = {(*„ . . . , xm+i) G R- + 1| |x,| + • • • +|xm+1| = 1},

a polyhedral /n-sphere. 2m has a canonical triangulation whose vertices are

the intersections of 2m with the coordinate axes. Radial projection of 2m onto

Sm = {(*„ . . ., *m+1) G R"+1| (x,)2 + • • • + (xm + l)2 = 1}

gives a smooth triangulation of the standard ftj-sphere. Let nm be the cell

complex obtained from 2m by identifying x with -x for all x G 2m. Then the

first barycentric subdivision H'm = K is a simplicial complex which gives a

smooth triangulation (K, </>) of real projective m-space Pm(R).

Proposition 3. rV¡'(Pm(R)) is represented by the sum of all the (m — /)-

Simplexes of the triangulation K.

Proof. By definition, W¡'(Pm(R)) is represented by the sum of all the

(/w - /)-simplexes of the first barycentric subdivision K'. Although K is not

the barycentric subdivision of a triangulation, it is the barycentric subdivision

of the regular cell complex IT."1 whose cells are simplexes. The arguments of

Lemma 1 and Proposition 1 apply without change to show that sm_¡(K) is

homologous to Jm _ ¡(II" ).   □

Remark. This proposition also follows from [6, Proposition (i), p. 243].

Each A:-cell of the »i-sphere 2m lies in a (k + l)-dimensional linear sub-

space of Rm+1 defined by the vanishing of m - k coordinates of Rm+1. For
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each such linear subspace R*+1, let

2m n R*+1 = 2f,

and let II* be the image of 2* in nm. There are

m + l\     ( m + l\

k+ if     \m- k)

such ^-dimensional projective subspaces n* in IT".

Let tk(Hm) be the chain of A>simplexes of K which are not in the bary-

centric subdivision of some n*.

Proposition 4. The chain tk(Ilm) is a boundary, 0 < k < m.

Proof. We shall show that tk(Tlm) is the sum of an even number of

mutually homologous fc-cycles. Each simplex of tk(Hm) is contained in a

unique ^-dimensional projective subspace A of FOT(R). We will see that A is a

subcomplex of K. Thus if c(A) is the sum of all the Ä>simplexes of A, then

c(A) is a cycle representing the generator of Hk(Pm(R); Z/2). Furthermore,

the &-simplexes of A all belong to /*(nm), so tk(Hm) is the sum of all the

cycles c(A) determined in this way. Finally we will show that there are an

even number of such cycles c(A).

Let a be a simplex of tk(Hm), and let s be one of the two Ä>simplexes of the

barycentric subdivision of 2m which correspond to a. Let L be the (k + 1)-

dimensional linear subspace of Rm+1 containing s. The image of L n Sm,

under the canonical map Sm -» Fm(R), is the subspace A determined by a.

For / = I, . . . , m + 1, let ± v, be the vertex of 2m corresponding to ± e¡,

where e¡ is the ith standard basis vector of ROT+I. Then the barycentric

coordinate corresponding to ±t5, in 2m is ±x,|2m, where x¡ is the z'th

coordinate function of Rm+1.

Let S be the simplex of 2m which carries s. Since s is not in the barycentric

subdivision of the ^-skeleton of 27", we have dim S > k. Let / = {/| ± v¡ is a

vertex of S), and define e: / —> {+1, -1} so that e(/)t>, is a vertex of S for

each / G /. Now each vertex w of s is the barycenter of some face T(w) of S.

Let wx, . . ., wk+l be the vertices of s, ordered so that T(w¡) is a face of T(wj)

for / <j. Define a partition J = {JQ, .. ., Jk+X) of the set {1,..., m + 1} as

follows. Let J0= {I, . . ., m + 1} — I, Jx = {/ G I\e(i)v¡ is a vertex of

J(w,)}, and for/» = 2,.. ., k + 1, let Jp = {/ G /|e(í>, is a vertex of T(wp)

but not of T(wp_x)). A dimension count shows that the subspace L of Rm+I

spanned by the vertices of s is given by the equations

[ e(i)x, = e(j)Xj,    i,j G Jp,p = 1, . . ., k + 1.

Let \J \ denote the number of elements of Jp. We have |/0| = (m + 1) -

(dim S + 1) < m - k. A partition / = {J0, . . . , Jk+X) of {1,. . ., m + 1}

(
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with |/0| < m — k will be called allowable. Any allowable partition J of

{1.m + 1}, together with a function e: 7, u • • • uJp -*{ + l, -1},

defines a (k + l)-dimensional subspace L of Rm+1 by the equations (*). The

set L n 2m is a subcomplex of the barycentric subdivision 2"", so the

corresponding space A c ^""(R) is a subcomplex of K. Since |/0| < m — k,

each simplex of L n 2"" is carried by a simplex S of 2m with dim S > k, so

all the A:-simplexes of A belong to tk(IY"), as desired.

It remains to show that there are an even number of such projective

subspaces A. For each allowable partition J there is at least one p such that

\Jp\ > 1, since |/0| < m — k. For each allowable J, choose such a p, and

choose /„ G Jp. For each A corresponding to the partition J and the function

e, let A' be the subspace corresponding to J and the function e' defined by

e'(0 = e(0 for i ¥= i0 and e'(i0) = -e('o)- Then A' ^= A and (A')' = A. The

existence of this involution A t-» A' shows that there are an even number of

subspaces A corresponding to each allowable partition J, so there are an even

number of A in all.   □

Theorem 2. Wf(Pm(R)) = C,+')*".

Proof. Let k = m - i. By Proposition 3, rV¡(Pm(R)) is represented by

sk(TLm), the sum of all the A>simplexes in the barycentric subdivision H'm =

K. Let i*(II*) be the sum of all the Simplexes of K in n*. Since II* is a

^-dimensional projective space, sk(îlk) represents the generator x" of

Hk(Pm(R); Z/2). But

^(nm)=2^(n*)-ri,(n'»),     / = (W + M,
j — 1 V        I        /

and tk(Tlm) is homologous to zero by Proposition 4.   □

Theorem 2 implies axiom (4) for all integers /' < m. Theorem 2 has been

proved independently by Goldstein and Turner [4].
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