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A SIMPLE EXPRESSION FOR THE CASIMIR OPERATOR

ON A LIE GROUP

MARY F. ANDERSON1

Abstract. The expression for the Casimir operator for a real semisimple Lie

group G in terms of coordinates given by the Iwasawa decomposition

G = KAN reduces on G/N to the difference of an elliptic operator with

constant coefficients on A and an invariant operator on M. This result

immediately identifies the principal series of induced representations with

representations defined on the eigenspaces of the restriction of the Casimir

operator to G/N.

When the Casimir operator T for a real semisimple Lie group G is

expressed as a differential operator on the group in coordinates given by the

Iwasawa decomposition G = KAN, it is seen, when restricted to G/N, to be

the difference of an elliptic operator with constant coefficients on A and the

Casimir operator on M. This result immediately identifies the principal series

of induced representations with representations which arise from the restric-

tion of the left regular representation of G to certain eigenspaces of TG/N. On

the other hand, when this expression of T is restricted to K \ G, it is seen to

be a second order invariant operator on AN. This allows us to identify the

symmetric space G/'K with the solvable group AN.

To the best of my knowledge, this result has not appeared in the literature,

even though it is intrinsic to Harish-Chandra's work and is suggested by his

expression for the Haar measure in terms of the Iwasawa decomposition. The

radial part of the invariant operators on G has been computed by Vilenkin,

and that of the operators on the Lie algebra g by Varadarajan and his

students. Enright and Varadarajan use an expression of T by Hotta and

Parasarathy to construct a model of the discrete series on certain eigenspaces

of T. However, their expression, which stems from a root space decomposi-

tion of g with respect to root vectors for a compact Cartan subalgebra, is

algebraic in nature and valid only for those groups with discrete series.

Ehrenpreis constructed models of the principal series and the discrete series

on spaces of eigenfunctions of T. However, until present, his work has been

restricted to G/K and G/MN.

Notation. For g,h E G and X E g, let gXh represent the linear functional
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on C\G) defined by

gXh-f-4:Ä8(**ptx)h)
1-0dt

If G has a subgroup decomposition G = HXH2, where Hx and H2 represent

closed subgroups of G, and g = fj, © b2 represents a decomposition of the Lie

algebra of G into a sum of the Lie algebras of b, and b2, this notation

facilitates the expression of the left and right invariant differential operators

on G in terms of left and right invariant differential operators on the

subgroups. To see this, assume g = ft,ft2; then

Xg = Xhxh2 = hxad(hxl)Xh2. (2)

Assume now that &à(h\x)X = aHx + ßH2 for some Hx G b, and some H2 G

b2. Then

Xg = ahxHxh2 + ßhxH2h2, (3)

and we see the right invariant operator obtained from X may be expressed as

a sum of a differential operator on Hx and a right invariant operator on H2.

To use this notion to obtain an expresssion for the Casimir operator in

terms of operators on teh subgroups K, A, and N as they appear in the

Iwasawa decomposition G = KAN, we must choose a convenient basis for g

and find expressions for the adjoint actions of elements of f and a on these

basis vectors. To this end, let bf be a Cartan subalgebra of qc and let g have

the Cartan decomposition g = f + to. As usual, let A+ = {a,, . . ., a„) be the

set of roots which are strictly positive on a with respect to some order, and

assume the roots ax, . . . , ar are simple, where r is the rank of G. Let Na G n

be the standard root vector for the root a and define Pa G p and Ka G f by

V2 Pa = Na + N^,       V2Ka~Na- N^. (4)

For the simple roots a¡, i = 1, . . . , r, let H^ be the normalized element of a

satisfying

«,(//) = <//„,// >• (5)

A convenient orthonormal basis for p is provided by the set of vectors

P^, if / = 1, . . . , ft,
X; =

H     ,    if i = ft + 1, . . . , « +«, r.

Similarly, the vectors K , a complete set of root vectors for m n bc and an

orthonormal basis for m n f)c> form a convenient orthonormal basis for f.

The vectors K^, N , and H^ give the following operators of differentiation

with respect to the Iwasawa coordinates:

Dkj( g) = D^f(kan) = kK^an o /, (6)

D*J{g) = D*J(kan) = kaN^n o f, (7)

D„f{ g) = DHJ(kan) = kH^an ° / (8)
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DH   is easily represented as a partial derivative. Let s£Ä' and represent

a E A by a = a(s) = exp(2'=,J,//„.). Then DH  = 3/35,.

We now prove a lemma needed to express the Casimir operator in terms of

the above differential operators.

Lemma 1. Let (k¡j) be the matrix expression of ad(/c) on p in terms of the

basis vectors Xj,j = 1, ...,« + r. Let 1 < / < n. Then

nîrk(D<-k)={°'    ÍfÍ'<n'

fifi M'VW      I «,(#„._„),    ifn+Ki<n + r.

Let p = j2"_ ,a,. Then

1 = 1

Proof.

Dk.kJf=±l*A(kawtKa)Xr,XJ)
dt t-0

If ^,= H^

Thus, if/ < n,

(9)

kjr = (ad(k)Xr, Xj), (10)

(11)

¿ad(exp ^K'|,_0 -[*;• xr\- 02)

Thus, if X¡, = P^, and i =?= i',

[ â;, X,.] = [ /^, Pj = ¿(a,. + a,)P^+<v - ¿(a,. - a,)¿^      (13)

where d is a function defined on ij* by

ä(ß)={1'    if/3 is a root of bc,

^P;      \0,    if /? is not a root of bc. ^   '

If i = i',

[ *v ^ ] = H'   for some ^ G °- (15)

[^,Z,]=[^,Jf/t,,_J=a,.(7/(V_JPv (16)

^>= s\a> (17>

for constants yJ¡t of which 7,, = 0. If i' > n,

Dj^kj, = o,(X_.)V (lg)

(9) now follows from the orthogonality of ad(fc) on p.

We are now able to prove the desired result.

Theorem 1. Let V be the Casimir operator on G and TM the Casimir operator

on M.  Then the expression of T as a differential operator in the Iwasawa
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coordinates g = ka(s)n is

+ 4 2 (e-2^(D^ f - e-*C>Z)¿ D* ). ( 19)

Proof. Recall that

r - "¿V/íf - 2 (V)2 - r*- (2°)
7=1 7=1

First, we find an expression for Xß in terms of D^, D* , and DH .

n + r

Xß = Xjkan = Ac ad(rc-')aft = k 2 A^on. (21)
/=i

Consider the terms in the last summation in (21). If /' < n, then X¡ = P  and

kXtan = kP^an = *:(-*„_. + IN Jan

= -kK^an + e^^kaN^n = -D£ + 2£>* . (22)

On the other hand, if i > n, then X¡ = H    , and

kXfin--^—. (23)

Thus

(Xjgf = ( 2 kß(-Di + 2e-<»>Z>*J + 2 *♦.£)*. (24)

The contribution to the Casimir operator from to is simply S^^A^g)2.

Since ad(/c) is an orthogonal transformation on to,

"¿'it it   =f°'    *'** (25)

Thus, when the RHS of (24) is summed over j, (25) and the result (9) of

Lemma 1 show that

We now combine (26) and (20) to obtain (19).

The restriction of T to functions invariant under right multiplication by N

has particularly the simple form

'or-j(£+ *«.)£)-r«. <W

This immediately results in the identification of the pricipal series with

representations on certain eigenspaces of TG/N.
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Corollary. Let a E Rr represent an element of ac and let irm be an

irreducible representation of M with character xm- Then the restrictions of the

following three representations of G to their respective K-finite analytic sub-

spaces are equivalent:

(i) the representation g -» V(g; a, m) induced by the representation

ma(s)n -* irm{m) exp(<r, s) (28)

of MAN;
(ii) the multiplier representation g —> %(g; a, m) on the irm right invariant

subspace L2m(K) of L2(K) defined by

1L( g; a, m)f(k) = exp(a - p, sg)f(kg), (29)

where, when k is taken to be an element of G,

g~xk = kga(sg)ng; and (30)

(iii) the restriction of the left regular representation of G to the subspaces of

analytic functions on G/N which satisfy

TG/Nf={(a,a)-yM(m))f, (31)

VLo - ¿Ate«)        = h - eK))/(Ms))|s_0, (32)
J s-0

and

{ f(xm)xmdm = /(*), (33)

where \m represents the normalized character of trm.

Proof. The equivalence of (i) and (ii) follows easily from the identification

of K and G /AN. Assume mm acts on a Hubert space Hm which has an inner

product ( , )m and a basis Bm. Let Lm(G) represent the set of all Hn valued

functions on G which satisfy

f(gma(s)n) = 7rm(m) exp(a - p, s)f(g). (34)

Then, if g is expressed in its Iwasawa coordinates g = kan, f is seen to be

completely determined by its values on K. Furthermore, each v E Bm de-

termines an intertwining operator Tv of the representations V(g; a, m) and

%(g; a, m), where Tv is defined by

TJ(g) = TJ(kan) = (f(k),v)m. (35)

A straightforward application of the Peter-Weyl theorem shows the maps are

injective, and that L^K) is spanned by the subspaces TvLm(G) as v runs

through all of Bm.

The equivalence of (ii) and (iii) follows naturally from Theorem 1. If

/ G Ll,(K) is analytic, then the function fix) defined on G/N by

f(x) = f(ka(s)) = exp(a - p, s)/(A:) (36)
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satisfies (31)—(33). It should be noted that, for fixed a, the energy integral for

the Casimir operator for a function/with Cauchy data (32) is

dk = (l+\(o-p,a-p)\)[\f(k)\2dk.
JK

(37)

Thus, the eigenspace representation described in (iii) becomes a Hubert space

representation with the inner product defined by the energy integral (37). The

uniqueness of solutions to (31) with Cauchy data (32) and (33) proves the

/C-finite equivalence of the representations of (ii) and (iii).

Corollary. The symmetric space K \ G may be identified in a natural way

with the solvable group AN. In this identification, the Laplacian is

*-%(§ + **>)$+*%<*'iD"J-        <38>

References

1. R. Courant and D. Hilbert, Methods of mathematical physics, vol. 2, Interscience, New

York, 1962.

2. L. Ehrenpreis, The use of partial differential equations for the study of group representations,

Proc. Sympos. Pure Math., vol. 26, Amer. Math. Soc, Providence, R. I., 1973, pp. 317-320.

3. T. J. Enright and V. S. Varadarajan, On an infinitesimal characterisation of the discrete

series, Ann. of Math. 102 (1975), 1-15.

4. Harish-Chandra, Harmonic analysis on reductive groups. I, J. Functional Analysis 19 (1975),

104-204.

5._, Harmonic analysis on reductive groups. II, Invent. Math. 36 (1976), 1-55.

6._, Harmonic analysis on reductive groups. Ill, Ann. of Math. (2) 104 (1976), 117-201.

7. S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962.

8. R. Parasarathy, Dirac operator and the discrete series, Ann. of Math. 96 (1972), 1-30.

9. P. C. Trombi and V. S. Varadarajan, Spherical transforms on semisimple Lie groups, Ann. of

Math. 94 (1971), 246-303.

10. M. Pazirandeh, Invariant differential operators on a real semisimple Lie algebra and their

radial components, Trans. Amer. Math. Soc. 182 (1973), 119-131.

Department of Mathematics, University of California, Berkeley, California 94720

/ I |/(*)|2+ 2
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