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ON/»-POWER CENTRAL POLYNOMIALS

DAVID J. SALTMAN1

Abstract. We show in this note that if p2\n, p is an odd prime and

UD(Q, n) is the generic division algebra of degree n over the rational

number field, then for z G UD(Q, n), zp central implies z is central.

For S any commutative ring, let D(S, n, s) (s > 2 always) be the ring of

generic n X n matrices in s variables over S (e.g. [J, p. 89]). Set R to be the

commutative polynomial ring 5'[{xl*|l < i,j < n, 1 < k < s}]. D(S, n, s) can

be described as the ring generated over S by the "generic matrices" Xk =

(xy), 1 < i, j < n, considered as elements of Mn(R). When S is a domain,

D(S, n, s) is a domain.

When S = F is an infinite field, D(S, n, s) has a central localization

UD(F, n, s), a division ring, called the generic division algebra of degree n

over F. Letp be a prime. We say z E R is/»-power central in a ring R if zp is

central but z is not. It is well known that UD(F, p, s) is a crossed product

(necessarily a cyclic crossed product) if and only if there is a /»-power central

z in UD(F, p, s).

Furthermore by, e.g., [J, p. 93], UD(F, p, s) is a crossed product if and only

if all simple F algebras of degree p over their centers (just degree p for short)

are crossed products. Finally, it is clear that a /»-power central z exists if and

only if such a z exists in D(F, p, s).

Let Z be the ordinary integers. Using a result [AS] of Amitsur and this

author, we will show that D(Z, n, s) has no /»-power central elements when

p2\n. We state this as our main theorem.

Theorem 1. Suppose p2\n, p is an odd prime, and zp is in the center of

D(Z, n, s)for some z E D(Z, n, s). Then z is in the center of D(Z, n, s).

We perform the proof of this theorem with the aid of two lemmas. Let

R = D(Z, n, s) and Rp = D(Z/pZ, n, s). There is an obvious natural surjec-

tion <p: R^ Rp. It is easy to see that there are s' E R, s E Rp such that

<p(s') = s and s', s are both images of central polynomials (e.g. [J, p. 36]). Set

A = R[l/s'], Ap = Rp[l/s]. By the Artin-Processi theorem (e.g. [R, p. 418])

A, Ap are Azumaya algebras. Clearly <p extends to a surjection, also called <p,

from A to Ap. As A, Ap are Azumaya, <p is also surjective when restricted to

the centers of A, Ap.
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Lemma 2. The kernel of <p: A —» Ap is pA.

Proof. We have inclusion AÇ^Ç M„(Z[x,*])[l/s'] = (by definition) T

and Rp C Ap C M„(Z /pZ[x,y\)[l / s] = Tp. <p clearly extends to a surjection

"""-> Tp with kernel pT. U I is the kernel of tp, pT n A = I. Now A/pA is

Azumaya and thus embeddable in matrices. By [A, p. 134], pA = pT n A =

I.   Q.E.D.
In [AS] Amitsur and this author constructed division algebras of character-

istic/? and degree/?', r > 2, with no/»-power central elements. We generalize

this slightly in order to prove the next lemma.

Lemma 3. A  has no p-power central elements, if p2\n.

Proof. Using standard arguments it is enough to construct a division

algebra of degree n and characteristic p with no /»-power central elements. Let

m be such that/»m|« but pm+1 \n and set ri = n/pm. From [AS] there is a

division algebra, E, of degree /»m and characteristic /» with no /»-power central

elements. The techniques of [AS] easily allow one to assume that F, the center

of E, contains a primitive n' root of unity and that there is a cyclic Galois

extension K/F of degree n'.

Let F((x)) be the field of formal Laurent series in x. E' = E((x)) = E

® F F((x)) is a division algebra. If z G E' is/»-power central, we may assume

z = z0 + zxx + • • ■ . Thus Zq' is central in E implying z0 is central. Continu-

ing by induction we have all z, are central and thus z is central, a contradic-

tion. Now set D = E' 8 n(x)) (K({x))/F((x)), x), where (#((*))/F((x)), x) is

the cyclic algebra as defined, for example, in [J, p. 82]. By [S, p. 166], D is a

division algebra of degree n, since E ® F K must be a division algebra. An

easy argument using splitting fields shows that if D has a /»-power central

element, then E' does also. The lemma is proved.   Q.E.D.

Returning to the main theorem, it is enough to show that A has no/»-power

central elements. So assume z G A is such that zp is central. As r\„>xp"A C

D n>\P"T = (0), there is a pm such that z & pmA - pm+lA. Considering

p~mz, we may assume z G Z — pA. Now <p(z) is central by Lemma 2, so

z = pzx + bx where bx G C = the center of y4. Modulo z»3^, z1" = bpx +

p2zxbp~l and so/»2z,¿»f -l maps to the center of A/p3A. If [zp yl] is the set of

all [z,, a] = zxa — azx for a El A, then p2[zx,A\b{~1 Cp3A. Since /I and

/!//»/! are both domains, we have [z,, A] Q pA. In other words, zx = /»z2 + b'2

for Z»' G C. We conclude that [z, A] Ç />l4.

Taking the /»th power of z = /»2z2 + b2, b2 G C, we have that, modulo p4A,

p3z2b%~1 is central. In other words,p\z2, A]b^~i Ç. pAA implying that [z2, A]

C pA and so that [z, A] C p3A. Continuing we have that [z, A] CpmA for all

m so [z, A] = {0}. Theorem 1 is proved.

Let K be an infinite field and p2\n. We remark that by well-known

isomorphisms, Theorem 1 is equivalent to the nonexistence of an integral

polynomial /(*,, . . . , xm) in noncommuting variables such that for any
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ax,...,amE Mn(K), f(ax, . . . , a„f is central but for some ax,...,amE

Mn(K),f(ax, . . . , am) is not central.

As the final remark of this note we observe that Theorem 1 implies that if

p =£ 2, there are no /»-power central elements in UD(Q, n, s), Q the rational

numbers.
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