ON p-POWER CENTRAL POLYNOMIALS

DAVID J. SALTMAN¹

ABSTRACT. We show in this note that if $p^2|n$, p is an odd prime and UD(Q, n) is the generic division algebra of degree n over the rational number field, then for $z \in UD(Q, n)$, z^p central implies z is central.

For S any commutative ring, let D(S, n, s) (s > 2 always) be the ring of generic $n \times n$ matrices in s variables over S (e.g. [J, p. 89]). Set R to be the commutative polynomial ring $S[\{x_{ij}^k | 1 \le i, j \le n, 1 \le k \le s\}]$. D(S, n, s) can be described as the ring generated over S by the "generic matrices" $X_k = (x_{ij}^k)$, $1 \le i, j \le n$, considered as elements of $M_n(R)$. When S is a domain, D(S, n, s) is a domain.

When S = F is an infinite field, D(S, n, s) has a central localization UD(F, n, s), a division ring, called the generic division algebra of degree n over F. Let p be a prime. We say $z \in R$ is p-power central in a ring R if z^p is central but z is not. It is well known that UD(F, p, s) is a crossed product (necessarily a cyclic crossed product) if and only if there is a p-power central z in UD(F, p, s).

Furthermore by, e.g., [J, p. 93], UD(F, p, s) is a crossed product if and only if all simple F algebras of degree p over their centers (just degree p for short) are crossed products. Finally, it is clear that a p-power central z exists if and only if such a z exists in D(F, p, s).

Let Z be the ordinary integers. Using a result [AS] of Amitsur and this author, we will show that D(Z, n, s) has no p-power central elements when $p^2|n$. We state this as our main theorem.

THEOREM 1. Suppose $p^2|n$, p is an odd prime, and z^p is in the center of D(Z, n, s) for some $z \in D(Z, n, s)$. Then z is in the center of D(Z, n, s).

We perform the proof of this theorem with the aid of two lemmas. Let R = D(Z, n, s) and $R_p = D(Z/pZ, n, s)$. There is an obvious natural surjection $\varphi \colon R \to R_p$. It is easy to see that there are $s' \in R$, $s \in R_p$ such that $\varphi(s') = s$ and s', s are both images of central polynomials (e.g. [J, p. 36]). Set A = R[1/s'], $A_p = R_p[1/s]$. By the Artin-Processi theorem (e.g. [R, p. 418]) A, A_p are Azumaya algebras. Clearly φ extends to a surjection, also called φ , from A to A_p . As A, A_p are Azumaya, φ is also surjective when restricted to the centers of A, A_p .

Received by the editors January 29, 1979 and, in revised form, March 15, 1979.

AMS (MOS) subject classifications (1970). Primary 16A38, 16A40.

¹The author would like to express his appreciation for support under N.S.F. grant MCS76-10237.

LEMMA 2. The kernel of $\varphi: A \to A_p$ is pA.

PROOF. We have inclusion $R \subseteq A \subseteq M_n(Z[x_{ij}^k])[1/s'] =$ (by definition) T and $R_p \subseteq A_p \subseteq M_n(Z/pZ[x_{ij}^k])[1/s] = T_p$. φ clearly extends to a surjection $T \to T_p$ with kernel pT. If I is the kernel of φ , $pT \cap A = I$. Now A/pA is Azumaya and thus embeddable in matrices. By [A, p. 134], $pA = pT \cap A = I$. Q.E.D.

In [AS] Amitsur and this author constructed division algebras of characteristic p and degree p', $r \ge 2$, with no p-power central elements. We generalize this slightly in order to prove the next lemma.

LEMMA 3. A_p has no p-power central elements, if $p^2|n$.

PROOF. Using standard arguments it is enough to construct a division algebra of degree n and characteristic p with no p-power central elements. Let m be such that $p^m|n$ but $p^{m+1} \nmid n$ and set $n' = n/p^m$. From [AS] there is a division algebra, E, of degree p^m and characteristic p with no p-power central elements. The techniques of [AS] easily allow one to assume that F, the center of E, contains a primitive n' root of unity and that there is a cyclic Galois extension K/F of degree n'.

Let F((x)) be the field of formal Laurent series in x. $E' = E((x)) = E \otimes_F F((x))$ is a division algebra. If $z \in E'$ is p-power central, we may assume $z = z_0 + z_1 x + \cdots$. Thus z_0^p is central in E implying z_0 is central. Continuing by induction we have all z_i are central and thus z is central, a contradiction. Now set $D = E' \otimes_{F((x))} (K((x))/F((x)), x)$, where (K((x))/F((x)), x) is the cyclic algebra as defined, for example, in [J, p. 82]. By [S, p. 166], D is a division algebra of degree n, since $E \otimes_F K$ must be a division algebra. An easy argument using splitting fields shows that if D has a p-power central element, then E' does also. The lemma is proved. Q.E.D.

Returning to the main theorem, it is enough to show that A has no p-power central elements. So assume $z \in A$ is such that z^p is central. As $\bigcap_{n \ge 1} p^n A \subseteq \bigcap_{n \ge 1} p^n T = (0)$, there is a p^m such that $z \in p^m A - p^{m+1} A$. Considering $p^{-m}z$, we may assume $z \in Z - pA$. Now $\varphi(z)$ is central by Lemma 2, so $z = pz_1 + b_1$ where $b_1 \in C$ = the center of A. Modulo $p^3 A$, $z^p \equiv b_1^p + p^2 z_1 b^{p-1}$ and so $p^2 z_1 b_1^{p-1}$ maps to the center of $A/p^3 A$. If $[z_1, A]$ is the set of all $[z_1, a] = z_1 a - az_1$ for $a \in A$, then $p^2 [z_1, A] b_1^{p-1} \subseteq p^3 A$. Since A and A/pA are both domains, we have $[z_1, A] \subseteq pA$. In other words, $z_1 = pz_2 + b_2'$ for $b_2' \in C$. We conclude that $[z, A] \subseteq p^2 A$.

Taking the pth power of $z = p^2 z_2 + b_2$, $b_2 \in C$, we have that, modulo $p^4 A$, $p^3 z_2 b_2^{p-1}$ is central. In other words, $p^3 [z_2, A] b_2^{p-1} \subseteq p^4 A$ implying that $[z_2, A] \subseteq pA$ and so that $[z, A] \subseteq p^3 A$. Continuing we have that $[z, A] \subseteq p^m A$ for all m so $[z, A] = \{0\}$. Theorem 1 is proved.

Let K be an infinite field and $p^2|n$. We remark that by well-known isomorphisms, Theorem 1 is equivalent to the nonexistence of an integral polynomial $f(x_1, \ldots, x_m)$ in noncommuting variables such that for any

 $a_1, \ldots, a_m \in M_n(K), f(a_1, \ldots, a_m)^p$ is central but for some $a_1, \ldots, a_m \in M_n(K), f(a_1, \ldots, a_m)$ is not central.

As the final remark of this note we observe that Theorem 1 implies that if $p \neq 2$, there are no p-power central elements in UD(Q, n, s), Q the rational numbers.

REFERENCES

- [A] S. A. Amitsur, A noncommutative Hilbert basis theorem and subrings of matrices, Trans. Amer. Math. Soc. 149 (1970), 133-142.
- [AS] S. A. Amitsur and D. Saltman, Generic abelian crossed products and p-algebras, J. Algebra 51 (1978), 76-87.
 - [J] N. Jacobson, P. I. algebras, Springer-Verlag, Berlin and New York, 1975.
 - [R] L. Rowen, On rings with central polynomials, J. Algebra 31 (1974), 393-426.
- [S] D. Saltman, Noncrossed products of small exponent, Proc. Amer. Math. Soc. 68 (1978), 165-168.

DEPARTMENT OF MATHEMATICS, YALE UNIVERSITY, NEW HAVEN, CONNECTICUT 06520