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SUBHARMONIC FUNCTIONS AND UNIFORM ALGEBRAS1

DONNA KUMAGAI

Abstract. Recently Aupetit and Wermer [J. Functional Anal. 28 (1978),

386-400] have shown conditions under which analytic structure exists in the

spectrum space of a uniform algebra. Their work makes critical use of

subharmonicity properties of certain classes of functions. In this paper, we

develop a technique which offers an alternate and unified proof for sub-

harmonicity of the functions in their paper assuming Basener's generalized

Shilov boundary conjecture. Our technique uses the Oka-Wermer method

applied to the «-fold tensor product of the algebra. We exhibit further

applications of our main result including a special case which holds for all

uniform algebras.

Introduction. Let A be a uniform algebra on a compact Hausdorff space X

with spectrum M. We know that in many cases M\X has a natural analytic

structure. If the structure is one-dimensional and if / G A, then locally either

/ is constant or / defines a covering map of a portion of M\X onto a subset

of the complex plane. This suggests that the mapping properties of functions

in A should be used to exhibit the analytic structure in M\X, and indeed

some deep results have been obtained along this line [1]. Recently, Aupetit

and Wermer proved the following [2], which extended the earlier results by E.

Bishop, J. Wermer, and R. F. Basener.

Theorem 1. Let W be a component of C^fiX). Assume that there exists a

subset G of W such that

(1) G has positive exterior capacity.

(2) For each X G G the fiber over X, f~\X) = {y G M\f(y) = X), is de-

numerably infinite or finite.

Then there exists an open dense subset of f~l(W) which can be given the

structure of one-dimensional complex analytic space such that each g G A is

analytic on this space.

The key tool used in the Aupetit-Wermer paper is the subharmonicity

properties of certain classes of functions which arise in the following manner.

For/, g G A, suppose u is a set function from compact subsets of g[f~l(W)]

into R u {-°o}. Some examples of such functions in the Aupetit-Wermer
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paper   are:   ux(K) = log{maxzSAr|z|},   u2(K) = diameter[Ä"],   u3(K) =

log(diameter[ÄT]}. For each such u¡ associate a function %, on If by

%(x) = Ui{g[f-x(x)]},       XEW.

It is the subharmonicity of the % that plays a large role in the Aupetit and

Wermer approach. The subharmonicity of %, is established by Wermer in an

earlier paper [3] by combining an idea of Oka with results from the theory of

uniform algebras; Aupetit and Wermer prove the subharmonicity of %j by

expressing u2 in terms of «,; they prove that %, is subharmonic by applying

potential theoretic results and the fact that cll2 is subharmonic. In all of their

proofs the characteristics of the individual functions are utilized in an

important way.

In this paper we develop a technique to provide a single proof for the

subharmonicity of all the %, in the Aupetit-Wermer paper and a larger class

of functions assuming Basener's generalized Shilov boundary conjecture. A

detailed discussion of the conjecture will be given later.

Our technique, modeled in part after Wermer's proof for 6ilx, is as follows:

Consider the tensor product algebra C3)„ A of « copies of A. Define ^ on a

component Wot H"X[ÄM)^ÄX)]by

<Ka., • • • , K) = log{max|G(<f>„ . . . , </>„)|; (<¡»„ ..., $J

E (/,... ,f)-\xx,.. .A)},

where G E ® nA. Using the Oka-Wermer method we show in Theorem 2

that $ is plurisubharmonic.

Corollary 1 shows that if n = 2 then the restriction of \p on the diagonal of

W establishes the subharmonicity of all %,'s in the Aupe tit-Wermer paper.

Corollary 2 shows that functions associated with transfinite diameter and

capacity are subharmonic.

The generalized Shilov boundary condition, which Aupetit and Wermer did

not require, is required in our proof because we have put their problem into

the context of higher dimensional algebras and functions of several complex

variables. It has been conjectured that this hypothesis can be removed, and

recently R. F. Basener has verified that the generalized Shilov boundary

condition holds for a large class of uniform algebras ([4], [5]). Our hypothesis

is independent of conditions (1) and (2) in the Aupetit-Wermer theorem.

Thus, our approach offers a potentially comprehensive and efficient tech-

nique for proving subharmomcity of functions associated with a uniform

algebra.

The tensor product ®"_i A¡ of uniform algebras A¡ on Xt is the smallest

closed subalgebra of C(LT"=1 X¡) generated by functions of the form

hx(xx) ■ ■ • hn(xn), where h¡ E A¡ and x¡ E X¡. By <8>„ A we mean the tensor

product of n copies of A.

LetA" = {(/„ . . . ,/n)|/,, ...,/„ 6 A), so that each F = (/„.. . ,/„) E

A„ maps M into C". If K is a compact subset of M let AK = {/ G C(K)\f is a
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uniform limit on K of functions from A). For F G A", let K(F) = {x G

A/|F(x) = 0). K(F) is ^4-convex, i.e. the maximal ideal space of Ayir) is V(F).

Definition. dnA = cl[U {àoAv<F)\F G >T}]. 9„^ is called the nth Shilov

boundary of A. dçA is the usual Shilov boundary of A. It has been conjec-

tured that the following condition is true for arbitrary uniform algebras, AJy

j = l,...,«:

® Aj
7 = 1

n

u    n \Aj.
■  ■   +1, = /    j=\

R. F. Basener [5] has recently proved the condition to be true for <£>"_, Aj

where Aj = P(Xj) and Xj is polynomial polyhedron. He has also shown that if

Ax is an arbitrary uniform algebra and A2, any polydisc algebra, then

Ax <S> A2 satisfies (*) for / = 0, 1. We are ready for our main theorem.

Theorem 2. Let X,A, and M be as before. Assume ®nA satisfies the

condition (*). For f G A let S be the map on Wx M with ^{tpx, . . ., <pn) =

(/(<Pi), . • - ,/(?„))• Let W be a component ofWx[f(M)\f(X)]. ForGE®nA

andX G W,put

*(A) = log{max|G(<]p)|: tp G ^'(À)}.

Then \L is plurisubharmonic on W.

Proof. First we show \p is upper semicontinuous on W. Fix X G W.

Assume {Xk}k°=, -+ X. Suppose \p(Xk) > I > -oo for all k. We claim \p(X) > I:

i(Xk) = max{log|G(>*)|: <pk G ^'(X*)}.

Since S~\Xk) is compact for each k, there exists <pk G II" M, the maximal

ideal space of ®nA, such that <pk = S~\Xk) and log|G(<p*)| > /. By com-

pactness of II" M we can find a subnet {<pa} of {<p*} which converges to tp in

n,M.

S(<p) = lim <S(<pa) = lim S(<pk) = lim A* = A,
a k k

log|G(<p)| =limlog|G(<pa)| >/.
a

So, »//(A) = max{log|G(<p)|: <p G ^"'(A)} > /. This shows that uV is u.s.c. on W.

It remains to be shown that if T is an arbitrary linear transformation, \p ° T

is subharmonic on W in each variable. We will show »// restricted to a given

complex line, L, in W is subharmonic. Let

L =  H    { (A,» ..., K) e W|  ¿  a;,A, = y, j ;        au, y G C.

Let A be a closed disc contained in L and 9A be the boundary of A in the

topology of L. Choose a polynomial P such that \j/\L < Re F on 3A; i.e.,

yh\L- \e~p\ < londA.
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Put^m,, . . . , <pn) = /(<r,);

n

Fj = 2 «,/i - Yy.      y = 1,...,»- 1;
(«1

K=Leíl M|F>(<p) = 0,7 = 1, ...,«- lj;

Let <2, be the Cartesian product of X with n — 1 copies of M in which X

appears at the rth entry. Thus, Qx = X X M X • • • XM. From the hy-

pothesis we have,

n

3„_, ®A = U [\A X dhA X • • • XdjA] C U   Q,-
"             j\+ ■ ■ ■ +j„ = n-l; ,= 1

J\Ji.h > 0

Let (S>„ Ay be the restriction algebra, (g£ C(K)|g is a uniform limit on V

of functions from ®nA). Let 30 ® „ Av to be the usual Shilov boundary of

® nAv. By the definition of generalized Shilov boundary, it follows that,

^®nAyQ^n_x®nA Ç \Jl.iQt-
Denote TV = <5 '(A). We claim N Q K\30 <S> „ Av. To prove the claim, we

show N Ç F\ U ?., Q¡. Suppose tp EN. Then, ̂ (<p) E Â Ç L. So

n

2   «/>//(?) " Yy»       7 - 1, ...,»- 1.
i-i

Hence, <p e V. If <p e U "_, Q¡ then ç»,. E X for some 1 < /" < n. But,/((p,.) G

f(M)\f(X). So ç.,. <2 X. Hence A7 c Kn U "., ß, as claimed.

Fix | G Â and choose 9 = (0X, . . . ,9„) E <$~X(Q on which \G\ takes the

maximum. By the local maximum modulus principle of (£>„ Av applied to N,

|G(«)|-|e-JW,')--—«»-)>|<|G(ij)|-|e-'(«'").**»|

for some ij G dN, where dN is the boundary of N relative to V. But,

dN ç r-'OA). So

|G(#)|-|e-'W«--^»|< 1.

Thus, we conclude, for arbitrary £ E A,

log max{|G(m)|: «p G ^"'(1)} < Re P(Ç).

We have shown that \p is plurisubharmonic on If under the hypothesis (*);

however, we show in Theorem 3 that yp is «-subharmonic without any

hypothesis on the generalized Shilov boundary.

Recall that an upper semicontinuous function \p on an open subset fl of C

is «-subharmonic if-co <i|/< 00,^^-00 on any component of fl and xp is

subharmonic in each variable.
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Lemma 1. Suppose u is upper semicontinuous on an open subset fl of C, and

-oo < u < oo. Assume u ^ -oo on any component of fl. // u satisfies the

condition below, then u is n-subharmonic:

Given any polydisc D <ZÜ and a polynomial P on C, if u < Re P on 3 °D,

the distinguished boundary of D, then u < Re P on D.

Theorem 3. Notations as before.

«MA) = log{max|G(0)|; 9 G ^'(A)}

is n-subharmonic on W.

Proof. For simplicity of notation we prove the theorem for n = 2. The

same argument holds for the general case. We have shown in Theorem 2 that

u/ is u.s.c. on W. It suffices to show that $ satisfies the condition of Lemma 1.

Let D — Dx X D2 be a bidisc in W, with 3°£> its distinguished boundary.

Choose a polynomial P such that \p < Re P on 3 °D. That is, suppose for each

(v„ vi) G 3°Z»,if (¥„0^ G ^-'(Vp^-Then

|G(«pP<p2)|-|e-w^>^»|< 1. (1)

Let (xx, x2) be an arbitrary point in D. By compactness of S~l(xx, Xj), there

is a point (f?,, 92) G S~l(xx, x^ on which \G\ takes the maximum value. We

will show

\G{9x,92)\-\e~p^\< 1.

Fix 9X. Define H(0) = G(9X, 9) ■ e-pWM9)) for 9 G M. It is easy to show

that H G A. Recall that (9X, 92) G <S'\xx, xj where (x„ Xj) G D. Hence,

02Ef~ l(D2). Applying the local maximum modulus principle for A to

f~\D2), we obtain \H{92)\ < |i/(0¿)| for some 9'2 G a[/-1(Z>2)]. Note 3,^ n

f'\D2) = 0. We have,

|G(0„ ^l-le-fWW»! < |G(f?!, ̂ )|-|e-^(».M»0)|. (2)

Now fix 9'2. Let V= {(9,9¡)\9 Ef-\DX)}. We claim that d0(A ® Av) c

^-'(3°i)).
Proof of the claim. For each h G A ® A, define A(x) = h(x, 9Ç). Then

hE A. Apply the local maximum modulus principle to/-'(£>,) and obtain

i*1fto-i*i«|7^]-
So, for each h E A® A and (x, 92) G F, we can find some

(x',00 E 3[/-1(¿1)] xrW C/~'0£,) x/-'(3o2) = ^-'(3°i))

such that |«(x, ^)| < \h(x', 92)\. This shows that <S~\cl0D) n K is a closed

boundary for A ® Av. Hence 30(,4 ® /4K) ç <S~l(ß°D). Hence there exists

(£, flj) G 30(/l ® Ay) such that

|G(0„ Ö^l-Ie-^«.)^»! < |C(¿ ^|.|e-'W0/(«))|. (3)
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By (2), (3), and (1),

\G(9X, e^-le-^'-^l <\G(tei)\-\e'p^'^\ < 1.
This concludes the proof of Theorem 3.

In the remainder of this paper, we shall discuss applications of Theorem 2.

In [2], B. Aupetit and J. Wermer developed sufficient conditions for the

existence of analytic structure in the maximal ideal space of a uniform

algebra, improving on the earlier results by R. Basener [6] and E. Bishop [7].

Aupetit and Wermer's proof depends critically on subharmonicity properties

exhibited by certain classes of functions associated with the uniform algebra.

Presently, we shall focus our attention on these functions.

Notation. Fix g E A. For X G W, a component of C\f(X), denote:

Kg(X) = g[/"'(X)] = {g(y):y Ef~x(X)} c C;

Zg(X) = max{|Z|:Z G Kg(X)};

rg(X) = max{l/|Z|:Z G Kg(X)};

dg(X) = diameter of Kg(X).

Aupetit and Wermer constructed the following functions and have shown

that each of them is subharmonic on W for all/ and g in A :

Function 1: X—» Zg(X);

Function 2: X -» log Zg(X);

Function 3: X -» dg(X);

Function 4: X -» |exp P(x)\ ■ dg(X), where F is a polynomial;

Function 5: X -» log dg(x).

They have also shown that for fixed \E W, and a complex number a with

a G Kg(X0), the polynomial hull of Kg(X0),

Function 6: X —» rg_a(X) is subharmonic in a neighborhood of X0.

Subharmonicity of certain classes of functions associated with Kg(X) includ-

ing the ones listed above follows from Theorem 2.

Corollary 1 to Theorem 2. Suppose A 0 A satisfies the hypothesis (*).

Then Functions (l)-(6) listed above are subharmonic.

Proof. If we let « = 2, Theorem 2 states that

«KX,, X2) = log max{|G(0,, 92)\ \(9X, 92) G $-\\v X2)}

is plurisubharmonic. Hence \p is subharmonic in each variable. Let G(9X, 9^

= g(9x). Then log max{|g(0,)|: 9X E f~l(X)} is subharmonic. This shows that

Function 2 is subharmonic. If log |«| is subharmonic so is \h\. Hence Func-

tion 1 is subharmonic. \p is subharmonic on the diagonal of each component

of W. By setting G(9X, 92) = g(9x) - g(92) we have, logmax{|g(Ô,)-

g(92)\: (9X, 92) E &~X(X, X)} is subharmonic. This shows that Functions 3 and

5 are subharmonic. log(|exp F(X)| • dg(X)) = Re P(X) + log dg(X). So, Func-

tion 4 is subharmonic. Subharmonicity of Function 6 is proved in [2] via

subharmonicity of log Zg, Function 2.   □
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Corollary 2 to Theorem 2. Suppose ®„A satisfies the condition (*). Then

X -» Capacity[ATg(A)] is subharmonic on each component off(M)\f(X).

A theorem by Szegö relates capacity to a geometric quantity called trans-

finite diameter [8]. Diameter of order « of a closed bounded set, E, denoted

by ¿„(F) is

d„(E) = max{ u \z, - zfH(n~x\ z„ Zj EE,Ki<j<n}.

If n = 2, d„(E) is the ordinary diameter of F. It is straightforward to show

that d„ < </„_, < ■ • • < diameter (F) < oo. We set d = lim„ d„ and call it

the transfinite diameter.

Theorem 4 (Szegö). The capacity of a closed bounded set is equal to its

transfinite diameter.

We are now ready to prove Corollary 2.

Proof. Since the monotone decreasing limit of subharmonic functions is

subharmonic, we need only to prove that for all n > 2, X -» dn[Kg(X)] is

subharmonic. We shall use the notation dn(X) to mean dn[Kg(X)]. If g G A and

<p = (<p„ . . . , <p„) E Wx M, denote gi(<p) = g'tpj, i = 1, . . . , n. g,. G <g> „ A

for each i. Hence, ni</</<n(g, - gf) E <g) „ A. For (A,, . . . , A„) G

ir,[/(M)\/(*)]put

Vn(Xx, . . . , A„) = maxi     II      |g,(<p) - S»|: <P G f-'(A„ . . ., Aj).

Then dn(X) = F„(A, . . . , A)2/n(n-2), i.e., dn is Kn2/"(n-2) restricted to the diago-

nal. By Theorem 2, log Vn is plurisubharmonic on W, hence subharmonic on

the diagonal of W. This establishes subharmonicity of d„, since

2 2

n(n - 1) n(/i - 1)
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