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DIRICHLET PROBLEM IN LIPSCHITZ DOMAINS

WITH BMO DATA

EUGENE B. FARES AND UMBERTO NERI

Abstract. In any bounded starlike Lipschitz domain, the harmonic func-

tions whose boundary values are in BMO (the class of functions with

bounded mean oscillation) of the boundary are shown to be characterized

by the property that their Littlewood-Paley measures are Carleson measures.

This result extends the analogous characterization found by the authors

when the domain in question is a half-space.

1. Introduction and statement of the result. The purpose of this paper is to

characterize, by means of certain Carleson measures, all harmonic functions

in a Lipschitz domain which have boundary values with bounded mean

oscillation. This work extends the 2-dimensional result in [6], obtained with

the aid of conformai mapping, and utilizes several results from Dahlberg's

papers ([l]-[4]). We acknowledge with pleasure the helpful conversations with

Professor B. E. J. Dahlberg on this subject matter. Corresponding results for

half-spaces were the precursors of this paper (see [5] and [6]).

Let us fix our notation and definitions. D denotes a bounded domain in

Rn+1 whose boundary 3D is a Lipschitz manifold of dimension n > 2. For a

technical reason explained below, we shall assume that D is star-shaped with

respect to some point P0 E D. Throughout the paper, P will denote points

inside D while Q denotes points on 3D. The letter C will denote various

positive constants depending only on the Lipschitz character and on the

dimension of dD.

Along dD we have an inward-pointing vector field of nontangential unit

vectors v = v(Q) in R" + 1. For each Q0 G dD and 8 > 0, the intersection of

dD with the circular cylinder having for axis the line spanned by v(Q0) and

radius 5 is called a surface ball with center Q0 and radius 8. It is denoted by

Bs = BS(Q0), or simply by B. The portion of the cylinder given by

T(B) ={Q + rv(Q0): Q E BS(Q0), 0 < r < 28 } (1)

will be called a (Carleson) tube over B. A positive measure p is a Carleson

measure in D if there exists a constant A > 0 such that, for all balls

B = BS(Q0),

p[T(B)] < Aa(B) (2)

where o denotes the (Lebesgue) surface measure on dD. If the tube T(B) is
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contained in a coordinate neighborhood of D with coordinates (x, t) E R" X

R, we have the representations:

Co = (*o> <ï>(*o)) G 3Z),

B = BS(Q0) = {(x, tp(x)): \x -x0\<S },

T(B) = {(x, t): \x - x0\ < 5 and 0 < / - <p(x) < 25 } (1')

for some real valued function <p uniformly Lipschitz continuous on R".

For any/ G L2(dD) and any surface ball B as above, we denote by

fB = o(B)-x\ fda
'B

the integral average of /over B. If the quasi-norm

Ml, = sup ja(Ä)-1 fjf - fB\2 doj (3)

is finite, we say that / has bounded mean oscillation on 3D (with respect to

surface measure) and we write/ G BMO(3D), or BMO(3£>, da) if necessary.

For each P E D, we let wP denote the harmonic measure evaluated at P. It

is well known that each uP is a probability measure on 3/) and is absolutely

continuous with respect to da. Hence,

do>P(Q) = K(P,Q)do(Q)

and each nonnegative density K(P,•) has integral one on oD. More recently,

Dahlberg has proved in [1] that each K(P,-) is square integrable on oD and

that, for all surface balls B, it satisfies the condition

{a(5)-'^Ä:2(F,-)^J      <B2a(B)-xfBK(P,-)da (B2)

for some constant B2 = B2(P) > 0 depending only on the point P and the

Lipschitz character of the boundary. It is clear from this that each / G

L2(aD), in particular/ G BMO(3D), has harmonic extension

[9>(/)](F)=f   /^=r   f(Q)K(P,Q)da(Q)
JdD JdD

for all FED, called the Poisson integral of / for the domain D. This

harmonic function in D has almost everywhere (da) nontangential limits

equal to/on 3D [1].

With each harmonic function u in D we associate the (Littlewood-Paley)

measure ju given by

dv(P)=\Vu(P)\2p(P)dP (4)

where p(P) is the distance from P to dD and dP is the (« + l)-dimensional

Lebesgue measure.

Definition. The linear space of all harmonic functions u in D such that,

for every surface ball B,

||"IU* = sup[M]Ä < oo, (5)
B



DIRICHLET PROBLEMS WITH BMO DATA 35

where

[U]B = o(firV[n*)] = «(*)"7   dp(p)
JT(B)

is denoted by HMO(£>) (see [5] and [6]).

In other words, HMO(D) is the class of harmonic functions whose

Littlewood-Paley measures are also Carleson measures in D. Our main result

is as follows.

Theorem. A function u is in HMO(Z)) if and only if u = 9(f) for some

f E BMO(D). Moreover, \{f\\, «|MU*-

The proof of this result depends on the lemma below. In the proof of the

lemma, we use an estimate from [7] which requires that D be star-shaped.

This geometric restriction appears nowhere else in our paper.

From now on, B = Bs is a surface ball of radius 8, B* is its concentric

double, and Z denotes the center point of the tube T(B).

Lemma. There exists a constant C > 0 independent of 8 such that, for all

f E BMO(3Z)),

v(Z)=(        \f- fB.\K(Z, Q ) da(Q ) < C|[/||,. (6)

Proof. Letting w = up, the harmonic measures of D evaluated at the

star-center P0, we set

fao = u{B*yi( fdu.
■>B'

Likewise, we set

f   -a{Bj)-Xl fdt*

where the Bj are surface balls of radius 2J8 concentric with B, and we let

Sj = Bj\Bj_x, with Bx = B* and integers./' > 2. We note that

v(Z ) < \fB. - /  | + f        \f- / | K(Z, Q)da(Q ).
JdD^B*

By Schwarz's inequality and condition (B2), we see that

x{o-(F*r7Bj/-/*-i2ife}

where B2 depends only on P0.
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The integral over dD\B* = U S} is dominated by

2 / \f - L\K(Z, ß) rfo + 2 l/, - /J/ K(Z, Q) da = 1 + 11.
J     Sj j Sj

Multiplying and dividing by K(P0, Q) and using the estimate [7, Lemma 4]

K(Z,Q)
ess sup

QeSj K(P0,Q)
<cjU(Bj)-i

where c, = 0(2  XJ) is independent of S (and X > 0), we obtain

Likewise, each term in II is dominated by

/c,[sup|4-4_i|L(5/)-1w(5,)
L     k

with

^-A.1|-«(v.r,lf'Jf-fJ du
Bk-\

(Bkylf\f - /j
iÀO

It is well known [7, p. 311] that u(2Bk_x) < cu(Bk_x) with c independent of Ac

and 8. In addition, as noted in [8] for more general densities, the supremum

of the harmonic BMO means

u(B)-{(\f-fu(B)\du
J R

is equivalent to the supremum of the corresponding means relative to da and

hence to the BMO(aD) means previously defined. Consequently, we obtain

the bounds

K#    and    i^-4J<c.IWU

with c0 and c, independent of ô and k. Hence,

n<c,|/|.(2/*)

and estimate (6) follows.

2. Proof of the theorem. We begin with the necessity part of the statement.

The condition u G HMO(D) implies the finiteness of the integral

jD\Vu(P)\2p(P) dP. By a result of Dahlberg [3, p. 4], we have the estimate

/  {N[u - u(P0)](Q)}2 da < C0f\Vu(P)\2p(P)dP (7)

for any fixed P0 E D, where A/[] denotes the nontangential maximal opera-
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tor. It follows then that u has nontangential limits f(Q) for a.e. Q E dD (see

[1] and also [7]). Moreover,/ G L2(dD) and (see [2]) u = 9(f).

On the other hand, with D replaced by a tube T(B) and with P0 = Z, the

center of T(B), a dilation shows that the constant C0 in (7) is independent of

the point Z. Hence, we have

f \f(Q) - u(Z)\2 do(Q) < f       \u-u(Z)\2do
dT(B)

<c[     |Vm(F)|2 dist(F, 37X5)) dP
'T(B)

<C[     \Vu(P)\2p(P)dP.
JT(B)

Therefore, dividing by o(B), we see that/ G BMO(3D) with

ll/B. < C\\U\U

Passing to the sufficiency, we choose any / G BMO(3£>) and we shall

examine its Poisson integral. Fixing any surface ball B with radius 8 and

subtracting from/its mean value over the concentric double B*, we form the

usual splitting:

/-/*•=[/- Sb-W + [/ - /*.]0 - X«.) =/. + h

«-*'(/- /*.) = #(/,) + 9(/2) = ux + u2.

Then, by (4), (5), and [3, p. 4], we see that

o(B)[ux]2B<f\Vux(P)\2p(P)dP
JD

<C2(   lfx\2do=C2[  \f-fB.\2do
JdD JB*

and hence

[«.L<qwu- (8)
Considering separately the positive and negative parts of f2 and applying

Harnacks's inequality to each of the corresponding positive harmonic func-

tions we obtain the estimate

\Vu2(P)\<Cp(Pyif  \f2(Q)\K(P,Q)da(Q)
JaD

= cp(pyiv2(p). (9)

Without loss of generality, we may assume that B is centered at the origin

and that T(B) has local coordinates (x, t), with t > tp(x), and center Z =

(0, 8). Since, by estimate (6), v2(Z) = [9(\f2\)](Z) < C||/||„ while G(5Z, Z)
> c8l~", the Comparison Theorem for positive harmonic functions [4,

Lemma 3] implies the bound

ü2(F)<C||/1U5"-,G(5Z,F)
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for ail F G T(B), with some new C > 0. Moreover, by virtue of the same

Comparison Theorem, on all of T(B) we can dominate G(5Z, P) by

Gy(5£«)(5Z, p); the Green's function for the tube T(5B*) with pole at the

point 5Z. Therefore, combining these estimates with (9), we conclude that

|V«2(F)| < C\\f\\J"-lp(P)-1G7X5B.)(5Z,P) (10)

for all P E T(B).

In view of (10), the quantity [u2]2B is dominated by

yfs-'f        f*(JC)+M[, - m(x)]-1{S"-1G7.(5i).)(5Z; (x,t))}2dtdx.

If we scale our variables x G R" and / G R by letting (x, t) = 8(x, t) and we

set tps(x) = 8 ~ l<p(8x), then the previous expression becomes

\\A\lf        [Mi)+\t~-ys(ï)Y\8"->Gn5B.pZ;(8x,8Ï))}2dt~dx.
■/\x\<\ J<ps(x)

This scaling dilates T(5B*) to the new tube

f = {(x,t): \x\ < 5, 0 < t-<ps(x) < 10}.

Moreover, by uniqueness of the Green's function, T has Green's function G

satisfying

G((0, 5); (x, t)) = «"-'(^„.¿(O, 55 ); (Sx, St'))

for all (x, t) E T. Hence, substituting this formula in the previous integral, we

obtain the estimate

■'Ix^l  J<ps(x) t -tps(x)

Now let Z = (0, 5), let ¿> denote the harmonic measure on T evaluated at

Z, and let B denote a surface ball on 3 T with center (x, <ps(x)) and radius

[t - tps(x)]. Applying Lemma 1 of [1] we obtain

G(Z; (x, t)) < C[t-tps(x)]1~"ib(B)

<c[t-<ps(x)]ö(äyl f K(z,-)dö

where K is the Poisson kernel for the tube T. Finally,

G(Z; (x,i)) < C[/"-cpÄ(x)]giL[^(Z,-)](x,%(x))

with €HL[•] denoting the Hardy-Littlewood maximal operator on df, and

therefore (11) becomes

Ms < c2\\j\\i L {^[•](*.ft(*))}2f/"i")+2['-%(*)] dt~) d*

< C2\\ft Sdf^[K]2dà < C2\\f\\l fjK]2do
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by the L2 boundedness of the maximal operator. Consequently, this estimate

and (8) imply that

M~ < CV\\*
by the L2 integrability of K.
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