
proceedings of the
american mathematical society
Volume 78, Number 1, January 1980

THE INFIMUM OF SMALL SUBHARMONIC FUNCTIONS

P. C. FENTON

Abstract. Suppose that u is subharmonic in the plane and that, for some

p > 1, lim,.,«, B(r)/(log rf = a < oo. It is shown that, given e > 0,

A(r) > B{r) - (a + e)Re{(log rY - (log r + mf)

for r outside an exceptional set E, where

<p- l)(log tf-1

f=¿¿  (logry-'^nll.r) ' o + e

1. Introduction. Let u(z) be subharmonic in the plane and define B(r) =

maX|z|_r u(z), A(r) = inf|z|_r u(z). The purpose of this note is to prove

Theorem. Let p > 1 be given and suppose that u(z) is subharmonic in the

plane and satisfies

lim     B^   = a < oo. (1.1)
r^> (logA-y

Then, given e > 0,

A(r) > B(r) - (o + e)Re{(log rf - (log r + mf} (1.2)

for all r outside a set E such that

to—i—/     c-'X*<r'„<_£..   (,.3,
r^5   (logry-iJEn[i,r) t a + e

The term Re{(log rf - (log r + iirf} is ^(p - l)(log ry~2(l + o(l))

when r is large, and in this form (1.2) should be compared with Theorem 4 of

[1], together with Barry's remarks in [1, §7.4]. The inequality is evidently

sharp as can be seen from u(z) = Re(Log zf (modified slightly in a disc

about 0). The case/7 = 1 in (1.1) is considered separately in §4.

If u(z) is subharmonic in the plane then, from the Riesz representation

theorem, there exists a unique nonnegative measure p defined on all bounded,

Borel-measurable subsets of the plane such that, if R is a given positive

number,

-!
dpt (1.4)"(*) = hR(z) + f       log

J\!\<R

for |z| < R. Here hR(z) is harmonic in |z| < R. Actually to obtain (1.4) it is

assumed that u is harmonic at 0 but this may be achieved in the usual way by

replacing « in a small disc about 0 by the Poisson integral of its boundary
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values on the disc. No loss of generality is entailed since we are concerned

with u(z) only when \z\ is large. In what follows we shall assume, without loss

of generality, that u(0) = 0.

In [2] Barry has put into subharmonic form results derived by Kjellberg

([4, pp. 190-192]) in the case u(z) = log|/(z)|, where/is an entire function.

Some of these are as follows.

Set n*(t) = /i(l?l < 0 and define

ux(z,R)=f       logll -j\dh, (1.5)
J\i\<R * I'|f|-

z

Vi<ä        If I1      J°
u2(z,R) = f       logll + -|-| dh = fR log 1+4  dp.*(t),      (1.6)

J\t\<-n Í •'n '

and

u3(z, R) = u(z) - ux(z, R). (1.7)

Then,   with   B/r, R) = max|z|_r Uj(z, R),   Aj(r, R) = mfw_r u/js, R), j =

1, 2, 3,

A2(r, R ) < Ax(r, R ) < Bx(r, R ) < B2(r, R ). (1.8)

Also

B3(r, R)<^ B(2R ),       A3(r, R ) > -^ B(2R ), (1.9)

for 0 < r < ±R. From (1.9) it follows that, for u(z) satisfying (1.1), ux(z, R)

converges uniformly to u(z) on bounded sets as R —> oo through a sequence.

Finally we note the subharmonic analogue of Jensen's Theorem [3, p. 473]:

for r > 0,

f' log -t dfi*(t) = ^- f2V u(reie) d.9 < B(r). (1.10)
J0 t ¿IT J0

2. A Lemma. We prove the following Lemma which, though very straight-

forward, is in fact central to the proof of the Theorem.

Lemma. Let Rx, R2 and R be positive numbers satisfying Rx < R2 < R. Then

U»    s    »\      CR* A¿U R) - B2(t, R)  ^     ,   2 /        R2\
I(RX,R2,R)=J- dt > -57T>*(/*)I1 +-^" I-

(2.1)

On integrating z~x  Log(l — z/t) around a semiannulus in the upper

half-plane we obtain, for any positive t,

CH'-t|-S1+7)}I

■ /„* M1 - "T '") * - /„" M1 - T '*) *• <2-2>

Integrating both sides with respect to n*(t) from 0 to R and inverting the

order of integration (which is justified since all three integrands are nonposi-
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tive) we obtain

I(RX, R2,R)= f dBf* Arg(l - ^ e») dp*(t)

- f d9f* Arg(l - ^V9) dp*(t)

= I2 - J, (2.3)

Integration by parts yields

/oÄArg(l-^^)rfu*(f)

= p*(R )Arg(l - ^ e«) - jf* ,-«)| Arg(l - ^ e*) A

-^^i-Ä^-^Vo^ü
R, sin 0

2/Ä,cos 9
dt

and thus

/2=^)/;Arg(i-^^)^-/;^iog
t + R,

t - R,
dt.

There is a similar expression for /,.

Now

Arg(-Î-)
ft, 7T   ^2

>-Arcsin->-2   R

and also

/" ¿JÛ log
•'0 *

f + Ä,

í - i?,
<// < M*(Ä) r°°í-,iog

■'0

= P*(R)T rl log
Jo

t + R,

t - R2

t + 1

dt

t - 1
dt

= ^2p*(R).

(The value of the integral follows on taking limits as Rx -> 0 and R2 -* oo in

(2.2).) Thus

h > -},V<* >(. + £). (2.4)

On the other hand /, < 0, and the Lemma follows.

3. Proof of the Theorem. From (1.8), (1.9) and the Lemma we deduce that,

forÄ2 <\R,

/;■ ^^ * > -i»v<*>(.+ä) - ^ »(2Ü). o,»
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Thus, with .//(/) = Re{(log tf - (log / + iirY) and Rx - 1,

çr2 A(t) - B(t) + axb(t)

> jj-[ Re{0°g R2Y+l - (log R2 + i*y+l)

- I ,V(Ä)(l + ^)-^ 5(2/?)+ 0(1). (3.2)

We choose R so that the second and third terms of the right-hand side of

(3.2) are small. This is done as follows. Given tj > 0, we can find arbitrarily

large values of r such that

f ^ dt < B(r) < (a + TjXlogry.
■'o       <

Suppose that /t*(f) >p(a + 2T/)(log t)"~x for r' < t < r. Then

(a + 2T,){(log rf - (log r'f) < f ^ ¿, < (a + r,)(log rf,

from which it follows that r' > r", where v = (t]/(a + 2t/))1//'. Also

5(r') < B(r) < (a + 77)(log r)" < (q + ^)(q + 2v) (log ry

It is thus possible to find arbitrarily large values of r at which

!**(/•)</»(a+ 2î,)(log/-y-'    and   B(r) < {° + 2,?) (log rf,

and we choose /? so that 2/? is one such value. Then

H*(R ) < n*(2R ) < p(o + 2ri + o(l))(log R Y~l    and

B(2R ) < c(log 2R Y, (3.3)

where c = (a + 2t/)2/tj.

Returning to (3.2) and making use of (3.3) we have, for R2 <\R,

■r2 A(t) - B(t) + cnb(t)
J(R2)=f

J\

dt
t

0        n-f/i_n \P+l        t\        n      ,    ■   \/> + 11> j^T Re{0og R2Y+l - Oog *2 + i*Y+1}

-\-n2p(a + 2-n + 0(l))(log Ä Y~ '(l + ^)

8cÄ.
—^(iog2/?r + o(i).

Now set /?2 = R 1_a, where a > 0 is fixed. Then

J(R2) > \ ^{a - (a + 2t,)(1 - a)1"" + 0(l)}(log R2Y~X

-%cR2a/(X-a\\ - a)-p(logR2Y(\ + o(l)) + O(l).
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Since we may take tj > 0 and a > 0 as small as we please we deduce that

Tim       J^ _. > 0. (3.4)
'—°°   (log rf

Suppose now that (1.2) is false for r in a set E. Then

dt
[!,/•]        ' •,~£n[l,r]       t

J(r)<-e( $Vldt + o[
JEn[\,r]      t J~En

--(„ + .)f *&* + .['*&*.
JEn[\,r]       t Jx t

Also «KO = \iñp(p - l)(log ty~2(\ + o(l)) as t -+ oo and thus

Urn       *-')
*—»   (logry   '

<l^lTnj(a-(a + e)-—Lr7/ Q, - l)MíTÍ A
Z '■-»oo [ (log r/        •/£n[l,r] ' J

Comparing this with (3.4) we deduce that

1 f <        ..(log')*-2 J o
hm-   I (P - 1)-^-^-^-dt <——.

f=¿¿   (logry-1 JEnlhr] t o + e

This completes the proof of the Theorem.

4. The case/) = 1. When/? = 1 in (1.1) we have on a sequence of r

fr ÜLÍíl dt <B(r)=0(logr). (4.1)
-'o       «

It follows that /x*(r) is bounded on a sequence and thus bounded (since p* is

nondecreasing), so that in fact (4.1) holds for all large r. We may thus appeal

to Theorem 12 of [1] to deduce that, if h(r) is positive and continuous for

r > c > 0 and such that

f
h(t)

dt
t

is divergent, then

A(r) > B(r) - h(r)

for certain arbitrarily large values of r. The same result may be obtained from

(3.1).
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