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OSCILLATION OF FIRST-ORDER NONLINEAR

DIFFERENTIAL EQUATIONS WITH DEVIATING ARGUMENTS

YUICHI KITAMURA AND TAKA§I KUSANO

Abstract. This paper is devoted to the study of the oscillatory behavior of

solutions of the first-order nonlinear functional differential equations

*'(')=   2   q,M«&(')))

+ F(t, x(t), x(g,(t)).x(gN(t))), (A)

*'(<) + 2  fc(0J!<*(*0)))
I— 1

+ F(t, x(t), x(gx(t)).x(gN(t))) = 0. (B)

First, without assuming that the deviating arguments g¡(t), 1 < i < N, are

retarded or advanced, sufficient conditions are established for all solutions

of (A) and (B) to be oscillatory.

Secondly, a characterization of oscillation of all solutions is obtained for

equation (A) with F = 0 and g¡(t) > t, 1 < i < N, as well as for equation

(B) with F = 0 and g¡(t) < t, 1 < ; < N.

The purpose of this paper is to obtain oscillation criteria for the first order

differential equations

*'C) = 2 ?,(')/,(*(&(')))i-i
+ F(t,x(t),x(gx(t)),...,x(gN(t))), (A)

xV) + 2  ft<W.(*(ft(0))
Í— 1

+ F(t, x(t), x(gx(t)),..., x(gN(t))) = 0, (B)

where the following conditions are assumed to hold:

(a) q„ g,. G C[[a, co), R], q¡(t) > 0, and lim,^ g,(/) - oo, 1< i < TV;

(b)/ G C[R, R],f is nondecreasing, and uf(u) > 0 for u ¥= 0, 1 <i < N;

(c) F E C[[a, oo) X A**1, R], and u0F(t, u0, ux,...,uN)>0 for u0u¡ >

0, 1 < / < N.

In what follows, by a proper solution of (A) or (B), we mean a function

x E CX[[TX, oo), R] which satisfies (A) or (B) for all sufficiently large t and

sup{|x(0|: t > T) > 0 for any T > Tx. The standing hypothesis is that

equations (A) and (B) do possess proper solutions. A proper solution of (A) or
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(B) is called oscillatory if it has arbitrarily large zeros and it is called

nonoscillatory otherwise.

The main results of this paper are as follows.

Theorem 1. Suppose that each /, 1 < i < N, satisfies

J* oo   ¿n /• — oo   a\i
——— < oo    and     I -77—r < 00   for any M > 0. (1)

M    f¡(u) J-M    f¡(u)

All proper solutions of (A) are oscillatory if

2   [ q,(t) dt = 00, (2)

where &¡ = {/ E [a, 00): g¡(t) > t), the advanced part of g¡(t).

Jrm     ¿u

0 W)

Theorem 2. Suppose that each /, 1 < i < N, satisfies

du 1—m    du
— < 00    and     I .. . < 00   for any m > 0. (3)
') •'0       M")

All proper solutions of(B) are oscillatory if

2   f   ?,■(/)-> = », (4)
1=1 J%

where % = {t E [a, 00): a < g,(i) < t), the retarded part of g¡(t).

All the literature on the oscillation of first-order functional differential

equations has been devoted to the case where the deviating arguments

involved are retarded or advanced (see, for example, [1]-[10]), and so the

above theorems can be covered by none of the previous results.

Proof of Theorem 1. Let x(/) be a nonoscillatory solution which is

eventually positive. There is T > a such that x(t) > 0 and x(g¡(t)) > 0 for

t > T, 1 < i < N. By conditions (b) and (c), /(x(0) > 0, 1 < / < N, and

F(t, x(t), . . . ) > 0 on [T, 00), and so from (A), x'(t) > 0 for t > T, which

implies that the f(x(t)) are nondecreasing on [T, 00). Let i be fixed. We

divide (A) by/(x(/)) and integrate it on [T, T'], T > T. Using condition (c)

and noting that/(x(g,(0)) > f(x(t)) for t E &¡ n [T, T'], we then have

rä'>r«^ dt
Jt   "w   /(*(<))

?,(') dt. (5)
/ î,n[7\7"]

Letting 7" —> 00 in (5) and taking (1) into account, we find

duC / %  ,       fx(°°)   du
j q,(t) dt<] j— < 00.

Since /' is arbitrary, this contradicts (2), and hence (A) cannot have eventually

positive proper solutions. Similarly, (A) does not possess eventually negative

proper solutions.
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Proof of Theorem 2. Let x(t) be a nonoscillatory solution of (B). Without

loss of generality we may suppose that x(t) is eventually positive. There is

t0> a such that x(t) > 0 and x(g¡(t)) > 0 for / > t0, 1 < i < N. Take T > t0

so large that g¡(t) > t0 for t > T, 1 < / < N. Since x'(t) < 0, t > f0, by (B),

the fi(x(t)) are positive and nonincreasing on [r0, oo), so that/(jc(g,(f))) >

f(x(t)) for t E % n [T, 7"]. Proceeding as in the proof of Theorem 1, we

obtain from (B)

*'(')    * ^   f1"     r.JiJxisM))
dt

> f q,{t) dt. (6)
J%r\[T,T'\

Letting 7" -» oo in (6) and using (3), we see that

X, -   ,       CX(T)    du

Jl,n[r,oo) •'«(oo)   /,(")

for 1 < / < N, which contradicts (4). This completes the proof.

Remark. If g¡(t) > t, 1 < / < N (resp. g¡(t) < r, 1 < j < N), then condition

(2) (resp. (4)) reduces to

2    /"%(') «Ä-oo. (7)

Thus Theorem 1 is an extension of a result of Anderson [1, Theorem 3].

We now consider the particular cases of (A) and (B).

At) = 2 ftWÄ(*(«(0)). (Ao)i=i

*'(*)+ 2 %W//W&(0))-o. (b0)
¿-i

A sufficient condition for (Aq) and (B0) to have nonoscillatory solutions is

given in the following theorem.

Theorem 3. Let conditions (a) and (b) hold. If

2    rq¡(t)dt< co, (8)
1=1 J

then equations (Aq) and (B0) have nonoscillatory solutions.

Proof. For an arbitrarily given constant k > 0, consider the integral

equation

x(t) = k + 2   /" ?,(')/,(*(&(*))) A, (9)
i = l   JT

where T > a is chosen so that

N

2 /(2A:)  rq¡(s)ds<k.
/-i •'r
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Put T0 = min1<1<JV irdt>T g¡(t) and let C denote the locally convex space

of all continuous functions x: [T0, oo)-»Ä with the topology of uniform

convergence on compact subintervals of [T0, oo). Let X = {x E C: k < x(t)

<2k,t> T0). Define the operator $: X -» C by

*x(t) = k + 2   f «,(»/,(*(&('))) ds,   t>T,
1=1   JT

$x(t) = k,    T0<t <T. (10)

It is easy to verify that $ maps X, which is a closed convex subset of C,

continuously into a compact subset of X. Consequently, by the Tychonoff

fixed-point theorem, $ has a fixed point x in X. Obviously, this fixed point

x = x(/) satisfies (9) for t > T and hence becomes a nonoscillatory solution

of(Ao).

Similarly, a nonoscillatory solution of (B0) is obtained as a solution to the

integral equation

x(t)-2k- 2   /%,(')/,(*(*,(')))*.
1 = 1   JT

It would be of interest to observe that by combining Theorems 1 and 2 with

Theorem 3 one easily obtains a characterization of oscillation of (A„) in the

advanced case and equation (B0) in the retarded case.

Theorem 4. Suppose that (1) holds and that g¡(t) > t, 1 < / < N. Then (7) is

a necessary and sufficient condition for all proper solutions of (Aq) to be

oscillatory.

Theorem 5. Suppose that (3) holds and that g¡(t) <t,\ < i <N. Then (7) is

a necessary and sufficient condition for all proper solutions of (B0) to be

oscillatory.

Remark. Theorem 5 was first proved by Koplatadze [2].

Example. Consider the equation

= \x(t + sin Of sgn x(/ + sin /) ?   f>

tß[log(t + sin t)]a

where a > 0 and ß are real constants. The advanced part of g(t) = t + sin t

is« = U k*_x(2ktr,(2k + l)w).

(i)Leta > 1. If ß < l,then

dt S    /•(2/c+i)5r dtf  -
J& tf

= 2 r(2*+1>*-—d±-oo,(i2)
'^[log(/ + sin t)]a      ~\ J2kn tß[log(t + sin f)]c

and so from Theorem  1 it follows that all proper solutions of (11) are

oscillatory. If ß > 1, then

dtfJim

<   00,
>2n   f"[log(i + sinf)]'

and hence, by Theorem 3, (11) has bounded nonoscillatory solutions. In this
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case (11) may have unbounded nonoscillatory solutions; in fact, x(t) = log /

is such a solution when ß = 1.

(ii) Let 0 < a < 1 and ß = 1. Then (12) holds, but (11) has a nonoscillatory

solution x(t) = log f. This example shows that the conclusion of Theorem 1 is

not true if condition (1) is violated.

A similar example illustrating Theorem 2 could easily be provided.
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