
proceedings of the
american mathematical society
Volume 78, Number 1, January 1980

ERGODIC PROJECTIONS OF CONTINUOUS AND

DISCRETE SEMIGROUPS

SEN-YEN SHAW

Abstract. Let A- be a Banach space. Let (T(t); t > 0} be a uniformly

bounded semigroup of operators on X, which converges strongly to P,

known to be a projection, as / goes to 0. If A is its generator and X0 [resp.,

X„ t > 0] is the set of x for which

-l

PqX = lim  t~l [' T(r)xdr
/-►oo Jo

resp., P,x =  lim   n   '2   T(it)x
n-»oo ,_0

exists, then, for each t > 0, P, is a bounded projection in X,; when / = 0,

X0 = N(A) © R(A)® N(P), R(P0) = N(A) and N(PJ =R(A)® N(P);
when t > 0, then

A-, = N(T(t) - I) © A(T(0 - /) ,

Ä(P,) = N(T(t) - I) and #(/>,) =R(T(t) - I); X, = X for all t > 0 if X
is reflexive. Some results on relations among the projections P,, t > 0, are

obtained. In particular, we have P, = P0 for all sufficiently small t if A is

bounded.

1. Introduction. Let S = {T(/); / > 0} be a semigroup of bounded linear

operators on a Banach space X. The infinitesimal generator A of S is defined

as Ax = lim^JTXi) - /]x/f wherever the limit exists. Let N(A) and R(A)

denote the null space and range, respectively, of A. Also we denote by R(S)

the set {T(t)x; x E X, t > 0}.

If S satisfies the additional assumption that

Px = lim T(t)x   exists for all x £ X, (1)
/-»o

then P is a projection from X onto Ä(5), and T(t) = PT(0 = 7X0/* (see [3,

p. 319]). Thus, we have T(t)\R(S)= T(t)P, T(t)\N(P) = 0 and

T(0 = T(t)\R(S)     0

0 0

T(t) is strongly continuous; in fact, T(t)\R(S ) is a. semigroup of class (C0) in

Ä(S ) with generator A \R(S ) = A. It follows that ^4 is a closed operator with

£>(y4) = R(S) and Ä(^) cä(5). The following extension of Theorem 1 with

Corollary 2 of [4] (or cf. [2]) is obtained immediately.
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Theorem 1.1.7/5« bounded by M > 1 and if it satisfies (1), then the set X0

of all x E X such that

PqX = lim  /-' (' T(t)x dr =   lim   X(XI - A)~xPx (2)
/->oo /o A-»0+

exists is a closed subspace; X0 = N(A) © R(A)® N(P). P0 is a projection in

X0, with range N(A) and null space R(A)(B N(P), and has norm \\P0\\ < M. In

general, N(A) © R(A)cR(S); but, if X is reflexive, then they are identical

and therefore X0 = X.

Using the notation A, = [T(t) - I]/t, we have ||exp(ivl,)|| < M for all

/ > 0 and for all t > 0 if || 7X011 < M for a11 ' > °- (See Corollary 2.2.) Now,
by Theorem 1.1, we can associate with each t > 0 a closed subspace Xt =

N(At) © R(At) and a projection Pt: Xt^> Xt which is defined as

1  f
P.x = lim   — I    e\p(rA.)x dr,       x E X,.

u-KX    U Jq

We have R(P,) = N(At), N(P,) = R(A,) and \\P,\\ < M.

An interesting phenomenon is that for each í > 0, Pt, defined as above, is

precisely the same as that defined by

1   "_1
P,x =  lim   -   2   T(it)x. (3)

This results from Theorem 1 of [6, p. 213] on the limit problem

,   «-i

Jx = lim   -   2   T'x (4)
"-»«   n   ,_o

for a general uniformly bounded discrete semigroup (7"; « = 0, 1, . . . }.

Actually, this can also be derived from Theorem 1.1, which will be done in

§2. §3 is concerned with relations among the projections Pt, t > 0.

2. Ergodic theorems for discrete semigroups. Let 7 G B(X). Its spectral

radius r0(7) = max{|X|; X E a(T)} is equal to limn^00(\\Tn\\)x/n < ||7||.

Hence, for any r > ra(T), there is an M > 1 such that ||7"|| < Mr" for all

« = 0, 1, 2, ... .

Conversely, we have

Lemma 2.1. // ||r"|| < A/r0", « = 0, 1, 2, ... , then every X with \X\ > r0

belongs to the resolvent set p(T), i.e., ra(T) < r0, and the following inequality

holds.

||exp(/7)|| < M exp(tr0),       t > 0. (5)

The proof is just routine arguments on the convergence of the Neumann

series and the norm estimate of the series expansion of exp(r7). The details

will be omitted here.

If we replace /, 7 and r0 by í/t, 7(t) and e'" respectively, then we have
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Corollary 2.2. //1| 7X011 < Me™ for all t > 0, then

||exp(MT)|| <Mexp^i-— J

for all t > 0 and for all t > 0.

Our key result in this section is

Theorem 2.3. If || T"|| < M for some M > 1 and all n = 0, 1, 2, ..., then

the limit Hmn_fOB(l/n) 2"-r] T'x exists if and only if the limit limA_0+ X[XI —

(T — I)]~ 'x exists, and they are identical when they exist.

The proof uses the following:

Proposition.  Let f(t) be a bounded and strongly  measurable X-valued

function defined on (0, oo). Then

lim   - f'f(r) dr =   lim   p f °° e->"/(0 dt,
r-»oo     / ^o )i-»0+      ^o

provided either limit exists.

For the proof, see [5, Theorems 8.2.3 and 8.2.4].

Proof of Theorem 2.3. We put/(0 = T'x for i < t < i + 1, / = 0, 1,_

Then the following computation verifies the assertion.

-   2   T'x=  lim   -   f"f(t)dt=   lim   ft  f°° e'^t) dt

=   lim   p  2    I        e'^T'xdt
u->0+        ,=o  •'i

oo

=  lim    2 re-"1- e-(,+1)fllrx
/i-*0+   ,^oL J

OO

=  lim (e" - 1) 2  e"(,'+1)T<x
M^0+ ,=o

=   lim (e*- l)(e"7- T)"'x
u->0+

= Hm xr\/-(r- /)i_1x.

The invertibility of XI - (T - I) follows from Lemma 2.1.

Since un < M implies ||exp(í(r - 7))|| < M for all t > 0, Theorem 1.1

applies with A = T — / and P = / so that the limits in Theorem 2.3 are also

equal to the limit \im,^x(\/t)j'0 eT(T~nx dt. Therefore we have the following

mean ergodic theorem for discrete semigroups.
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Theorem 2.4. // || T"\\ < M for all « = 0, 1, 2,

x G X such that
n-l1

,  then the set Xj of all

Jx= lim 2   Thc*>  lim   X\XI - (7 - I)]~lx
n->K,    «    ¿tTn A—0+      L J

I renr-ih
t J0

= lim
/->oo

>xrfr

exiru is N(T — /)©/?( 7 — I). J is a projection in Xj with range N(T — I),

null space R(T — I), and with norm \\J\\ < M. When X is reflexive, we have

Xj = X.

3. The projections Pt. Throughout this section, let 5 = {T(t); t > 0} satisfy

the assumptions in Theorem 1.1, and let {P,; t > 0} be the projections

defined by (2) and (3). That is, if t » 0, then X0 = N(A) © R(A)G> N(P),

R(P0) = N(A) and N(P0) = R(A) © 7V(F); if < > 0, then

X, =N(At) © Ä(^(), R(P,) = /VL4,) and JV(P,) = R(A,). In this section we

will study relations among Pr

We begin with three lemmas which will be used in the proofs of the

subsequent theorems.

Lemma 3.1. x belongs to X0 if and only if lim^^l / tn) J'g T(r)x dr exists for

some increasing sequence of positive numbers [tn] which diverges to infinity and

satisfies the condition that a = sup„(in + 1 — tn) < oo. For any such x and {tn},

the limit is PqX.

In particular, the assertion holds when tn = nt, which is the case we will

need in the proof of Theorem 3.4.

Proof. The necessity is trivial. To show the sufficiency, let {tn} satisfy the

required condition and v be the limit. Since for any t, there is an integer «

such that f„_i < / < /„, therefore, we have the estimate

-   [' T(s)xds --   f'n T(s)xds
t Jo tn J0

-   ('"T(s)xds  +1-   í'"T(s)xds
tn Jq \t  J,

< 2-M be    <
t „ t

which goes to 0 as t -» oo. This means that x E X0 and y = P0x.

Lemma 3.2. The following statements are equivalent.

(a)x E N(A).

(b)T(t)x = x for all t > 0.

(c) T(t)x = x for all t in some infinite set U of positive numbers which has at

least one limit point.

(d) There is a positive sequence {tn} such that t„^>0 and such that T(tn)x =

x for all n.
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Proof. (a)=>(b). If x E N(A) cR(S)= R(P), then dT(t)x/dt = T(t)Ax

- 0 for all t > 0. So,

r(0x - x = T(t)x - Px =  lim+ [ T(t)x - T(e)x]

=  lim   ['4-T(T)xdT = 0
e^o+ Je dr

for all t > 0. "(b) =* (a)" follows from the definition of A, and "(b) => (c)" is

trivial. To prove (c)=>(d), let {s„} C U and j„-»j0 > 0. Then, T(s0)x =

nmn-oo ^CO* = x °y tne strong continuity of T(t). On taking tn = \sn — sQ\,

we have tn -* 0 and T(tn)x = x, n = 1, 2, .... In fact, if s„ > íq, then

T(t„)x = r(Oro„)* = r(i„)x = x;

if sn < s0, then T(tn)x = r(íjr(í„)x = T(tn + sn)x = T(s0)x = x. Next,

suppose (d) holds. Since the set of positive t such that T(t)x = x is a

relatively closed sub-semigroup of (0, oo), and since it contains arbitrarily

small numbers, it is all of (0, oo), i.e., (b) is true.

Lemma 3.3. If C, denotes the operator t ~ ' f0 T(r) dr, then

Cn,x = Ct\ 2 T(it)x =
" i=0

for all x E X, t > 0 and n = 1, 2,

Proof.

1  f

-n "sT{it)n  Í-0
C,x (6)

B-l

Cntx = -[ T(st)x ds = - 2   /       Hst)x
nJ0 n ,=o J¡

= -2   T(it) C T(st)x ds
n ,=o •'o

C,x,

ds

n-l

-n 2 A»)n  Í-0

and similarly for the other identity.

The following theorems and corollaries form the main results of this

section.

Theorem 3.4. The following relations hold for all t > 0.

(i) X, C X0> N(P) c N(Pt) c ATO and R(P,) D R(P0).

(ii) C,X0 c X„ C,N(Po) C N(P,), C,\R(Pt) = P0|Ä(P,) and C,\R(PQ) = /.

(iii) P0X, c X„ P0 = P,C,\X0 and P0\X, = P,C,|^ = C,Pt.

Proof. All the assertions follow from the two identities:

PqX = PtCtx   for all x E Xq,

P0x = P,C,x = C,P,x   for all x E *,.

But these are obtained by taking limits of terms in (6).
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Corollary 3.5. R(P,) = R(P0) © [R(Pt) n N(P0)]. If N(Pt) = N(P0), then

R(Pt) = R(P0), and so, X, = XQ and P, = P0.

From the fact that T(t)x = x for all x E N(A), and 7(0^x = AT(t)x for

all x E D(A), we see that N(A), R(A) and X0 = N(A) © R(A) are invariant

under T(t) and so under C,, and that C,\R(A) is a surjection if and only if

C,\XQ is. Now, if they are surjective, then

R(A) = C,R(A) = C,[ Ä(^) © 7Y(P)] = C,ATO C #(/»,).

This, with N(P) c A^P,), yields the relation N(P0) =R(A)@ N(P) c N(P,)

C N(P0). Therefore, from Corollary 3.5 follows the next

Corollary 3.6 If C,\R(A) [or C,\X0] is surjective, then X, = X0 and

P, = Po-

Corollary 3.7. If || T(t) -P||-»0as/—>0 (which is equivalent to saying

that the generator A is bounded), then there is a 8 > 0 such that X, = X0 and

P, = P0for allO < t <8.

Proof. We have \\T(t)\R(A)- I\\ ~*0 as i->0. Let 5 > 0 be so chosen

that 0 < t < 8 implies || T(t)\klA)- I\\ < 1. Then for all such t,

\t-lf'[T(r)\R(Ä)-l]dr\Cl\R(A)-I\\ = < 1.

Thus, C,\R(A) is invertible, and therefore surjective. The conclusion follows

immediately from Corollary 3.6.

Remarks and Examples, (a) If X is reflexive, then N(P,) = N(P0) if and

onlyifÄ(P,)=/?(P0).

(b) Here is an example for Corollary 3.7. Let T(t) be the multiplication by

e"x on C[0, 1]. Computations show

(CJ)(x) = - f'e^f(x)
t Jq

7(0) ifx = o,

f(x)(e"x - \)/itx    ifx^O;
(7)

1 ->
/»W^- 2 eik'*f(x)

n k=0

j f(x)   iîtx = 0   (mod 2n),

\f(x) exp(/|(n - l)fx)(sin \ntx)/n sin \(tx)   elsewhere. (8)

(7) tells us that if C,f converges in || • H^ while / -> oo, then/(0) has to be 0

and the limit is the zero function. Hence we have R(P0) = {0} and X0 =

N(P0) c {/ E C[0, 1]; /(0) = 0}. This inclusion actually is an equality. In

fact, let / be continuous and /(0) = 0. Then, for given e > 0, there is a 8 > 0

such that |/(x)| < e on [0, 8), which implies |(Q/)(*)I < £ for x E [0, 8). If
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t > 2H/IL/&, then

\(CJ)(x)\ < \(e"x - \)/itx\ \f(x)\ < 2\\j\\Jt8<E

for x in [5, 1] also. Thus || CJ\\ -> 0 as -► oo, i.e.,/ G N(Po).

Similarly, one can show without difficulty that (/„} converges uniformly if

and only if fix) = 0 for all those x such that tx = 0 (mod 2ir), and that the

limit is 0 if it exists. That is, R(P,) = {0} and X, = N(P,) = (/ G C[0, 1];

fix) = 0 if tx = 0 (mod 2it)}. We have X, = X0 and P, = P0 for 0 < t < 2w,

but X2„ = iV(/>2J = {/ G C[0, l];/(0) = fil) = 0} g *0.

(c) The condition ||T(t) — P\\ —>0 is not a necessity in Corollary 3.7. For

instance, the semigroup of left translations 7(f): fix) -> fix + t) on X =

/./(-co, oo), 1 <p < oo, is not continuous in operator norm, but we have

X, = X0 « X and P, = P0 = 0 for all t > 0. First, /?(/>(,) = N(A) = {0} since

the spectrum of A = í//í¿c is purely continuous [1, p. 37]; secondly, R(Pt) =

N(T(t) - I) = {0} since the only periodic (a.e.) function in Lp (1 <p < oo)

is 0; finally, remark (a) applies.

(d) There are semigroups (with unbounded generators) such that P, ^ P0

for every / > 0. For instance, for the semigroup of multiplications by e"x on

UCB(-oo, oo ), the set of bounded uniformly continuous functions on

(-oo, oo), we have /?(/>,) = R(P0) = {0), XQ = N(P0) = {/ G UCB(-oo, oo);

/(0) = 0} and X, = N(Pt) = (/ G UCB(-oo, oo); f(2kir/'t) = 0, k =
0, ±1, ±2, . . . ) for / > 0. Another example is the left translations on

UCB(-oo, oo), for which we have R(P0) = N(A) = (constant functions} and

R(P,) = N(T(t) — I) = {continuous periodic functions with period t).

For general strongly continuous semigroups, we have

Theorem 3.8. // {f„}-^0, then n~_, R(P,) = R(P0) and spáñ{A/(P,);

« = 1, 2, . . . } = N(P0).

This follows from the next theorem plus the fact that N(P¡) c N(P0) for all

/ >0.

Theorem 3.9. Let U be an infinite set of nonnegative numbers with at least

one limit point. Then,

(i)n{W;/e U} = R(P0),

(ii) [u {N(p,y, t e u}]- = [u{N(p,y, t g u}]-.

Proof, x G R(P,) = N(T(t) - I) for all (£(/ implies x E N(A) =

R(P0), by Lemma 3.2, therefore r\{R(P,); t E U) c R(P0). But we also

have R(P0) c R(P,) for all t. So, (i) is true.

To show (ii), it suffices to show that the left side of it contains N(Pt) for

any limit point t0 of U. Suppose {tn} c U and tn -»■ i0. If t0 > 0, then, for any

x E N(Pt) = R(T(t0) - I)', there are {>-„} c X such that

X = Ä(^o)-/)vm

-Ä  }™jT(tn)- I)ymE[\J {N{P,y,n=\,2,...}]- .
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If t0 = 0, then for any x E N(P0) = R(A)® N(P), there are u G N(P) and

{wn} c D(A) such that

x = u +   lim   Awm = u +   lim     lim (7(í„) - I)wm/t„

- Ä i™^) - 'X^-A - ") e[ H {iV(Pj; n - 1,2,...}]" .

Hence, we always have N(P,¿) c [U (^(P,); í G í/)]~ once r0 belongs to U.

This ends the proof.
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