A NOTE ON M-IDEALS IN B(X)

JULIEN HENNEFELD

ABSTRACT. In this paper we prove some properties of M-ideals and HB-subspaces in an arbitrary Banach space. We then apply these properties to prove a theorem which generalizes to other spaces Smith's and Ward's results in [8]: for $1 , <math>B(l_p)$ contains no nontrivial summands and that each nontrivial M-ideal in $B(l_p)$ contains $K(l_p)$.

Introduction. A closed subspace J of a Banach space Y is said to be an M-ideal of Y if its annihilator J^{\perp} is l_1 complemented in Y^* . That is, there exists a subspace J_* of Y^* such that $Y^* = J^{\perp} \oplus J_*$ and $\|p + q\| = \|p\| + \|q\|$ whenever $p \in J^{\perp}$ and $q \in J_*$. J is said to be an M-summand if J is complemented by a closed subspace J' such that $\|p + q\| = \max(\|p\|, \|q\|)$ whenever $p \in J$ and $q \in J'$. M-summands are M-ideals, though the reverse is not necessarily true. These concepts, first introduced for real Banach spaces in [1], also apply to complex Banach spaces. Recently, much interest has focused on the approximation properties of M-ideals [5], [7].

For a Banach space X, let K(X) and B(X) denote the spaces of compact operators and all bounded operators respectively. In [3], Hennefeld showed that for $X = c_0$ or l_p , 1 , <math>K(X) is an M-ideal in B(X). In [8], Smith and Ward proved that, for 1 , <math>B(X) contains no nontrivial M-summands, and that any nontrivial M-ideal must contain $K(l_p)$. Their proof used Tam's characterization of Hermitian operators in $B(l_p)$, $p \ne 2$, the fact that $K(l_p)$ is the only two-sided ideal in $B(l_p)$, and their technique of investigating Banach algebra (with identity) M-ideals by looking at the associated Hermitian projections (this technique involves consideration of $B(l_p)^{**}$ and the Arens multiplication). In our proof of the generalization of the Smith-Ward result, we use instead some elementary properties of M-ideals and HB-subspaces, given in §1, and certain manipulations on matrices.

1. Some properties of M-ideals and HB-subspaces. The notion of HB-subspaces, first defined in [4], is a generalization of M-ideals. Moreover, in [4], it was shown that for certain Banach spaces K(X) is only an HB-subspace, not an M-ideal, in B(X).

DEFINITION 1.1. A closed subspace H of a Banach space Y is called an HB-subspace if its annihilator H^{\perp} is complemented by a subspace H_{\star} such that for each $f \in Y^{\star}$, $||f|| \ge ||f_{\perp}||$ and $||f|| > ||f_{\star}||$ whenever $f = f_{\star} + f_{\perp}$ with $f_{\star} \in H_{\star}$ and f_{\perp} nonzero $\in H^{\perp}$.

Received by the editors February 19, 1978 and, in revised form, January 3, 1979. AMS (MOS) subject classifications (1970). Primary 46B99, 46C05, 47B05.

Key words and phrases. M-ideals, basis, compact operators.

We then have the following straightforward lemmas, some of which we merely state without proof.

LEMMA 1.2. If H is an HB-subspace of Y, then each $\phi \in H^*$ has a unique norm-preserving extension to Y.

LEMMA 1.3. Let H be an HB-subspace. Then $f \in H_{\star} \Leftrightarrow ||f/H|| = ||f||$.

PROOF. (\Leftarrow) Let f satisfy ||f/H|| = ||f||. Write $f = f_* + f_{\perp}$. For $\epsilon > 0$, \exists norm one $x \in H$: $||f|| - \epsilon < f(x) = f_*(x) + f_{\perp}(x) = f_*(x)$. Hence, $||f_*|| = ||f||$, $||f_{\perp}|| = 0$ and $f = f_*$.

(⇒) For $f \in H_*$, let g = f/H and \hat{g} be a Hahn-Banach extension of g to Y. By the previous part of the proof, $\hat{g} \in H_*$. But f - g is in both H_* and H^{\perp} , which implies $f - \hat{g} = 0$. Thus, ||f/H|| = ||f||.

The proof of the above lemma shows how to obtain the decomposition for an arbitrary $g \in Y^*$, namely: g_* is the unique Hahn-Banach extension of g restricted to H, and $g_{\perp} = g - g_*$. Hence, we have the following lemma.

LEMMA 1.4. If H is an HB-subspace, then H_{\star} is isometric to H^{\star} .

LEMMA 1.5. If H is an HB-subspace, and J is an M-ideal with $H_* \subset J_*$, then $H \subset J$.

PROOF. First, we claim that $J^{\perp} \subset H^{\perp}$. To see this, suppose $g \neq 0$ is in J^{\perp} . Write $g = g_{H_{\bullet}} + g_{H_{\perp}}$. Note that $g_{H_{\perp}}$ cannot be 0, since $H_{\bullet} \subset J_{\bullet}$; also if $g_{H_{\bullet}} = 0$, then we are finished. Hence, we can suppose $g_{H_{\bullet}}$ and $g_{H_{\perp}}$ are both nonzero. Then,

$$||-g_{H_{\bullet}} + g|| = ||g_{H_{\perp}}|| < ||-g_{H_{\bullet}}|| + ||g_{H_{\perp}}||$$
 (since $g_{H_{\bullet}}$ is nonzero)
 $\leq ||-g_{H_{\bullet}}|| + ||g||$ (since H is an HB-subspace).

But $-g_{H_{\bullet}} \in J_{\bullet}$, $g \in J^{\perp}$ contradicts the fact that J is an M-ideal. Hence, $J^{\perp \perp} \subset H^{\perp \perp}$. Finally, $H \subset J$, since $H = H^{\perp \perp} \cap Y$, $J = J^{\perp \perp} \cap Y$.

LEMMA 1.6. Let J be an M-ideal of Y and $f \in Y^*$. Then f is an extreme point of the unit ball of $Y^* \Leftrightarrow f$ is in J_* or J^\perp and is an extreme point of the unit ball of J_* or J^\perp .

LEMMA 1.7. Let H be an HB-subspace and J an M-ideal. If $f \in H_*$ is an extreme point of the unit ball of H_* , then f is in J_* or J^{\perp} .

2. The generalization.

DEFINITION 2.1. A basis $\{e_i\}$ is called shrinking if the biorthogonal functionals $\{e_i^*\}$ form a basis for X^* .

DEFINITION 2.2. A basis $\{e_i\}$ for a Banach space is called unconditionally monotone if $\|\sum_{i \in A \cup B} a_i e_i\| \ge \|\sum_{i \in A} a_i e_i\|$ for all A and B.

If X has a shrinking basis $\{e_i\}$, then it follows from [6] that the operators with finite matrices are norm dense in K(X). Hence, in this case, we can associate a matrix to each $f \in K(X)^*$ such that f is determined by its matrix.

LEMMA 2.3. Let X have an unconditionally monotone, shrinking basis.

- (1) For each $f \in K(X)^*$, the functional obtained from the matrix of f by replacing with zeros any set of rows or columns will have norm $\leq ||f||$.
- (2) If a matrix in K(X) consists of a single nonzero column (row), its norm in K(X) is equal to its norm as an element of $X(X^*)$.
- (3) If a matrix in $K(X)^*$ consists of a single nonzero column (row), its norm in $K(X)^*$ is equal to its norm as an element of X^* (X^{**}).

These facts are proved in [2].

DEFINITION 2.4. We shall call a basis $\{e_i\}$ uniformly smooth if, for each $\varepsilon > 0$, $\exists \delta > 0$ such that $||x + y|| < 1 + \varepsilon ||y||$ whenever x and y have disjoint supports, ||x|| = 1 and $||y|| < \delta$. We shall call $\{e_i\}$ quasi-uniformly smooth if, for each $\varepsilon > 0$, $\exists \delta > 0$ such that $||e_i| + \lambda e_j|| < 1 + \delta \varepsilon$ for all i, j, whenever $|\lambda| < \delta$. Note that if a basis is uniformly smooth, the Banach space itself need not be uniformly smooth. For example, consider the standard basis for c_0 .

The following is a generalization of the Smith-Ward result, since the hypotheses of the theorem are satisfied if X is l_p , 1 .

THEOREM 2.5. Let X be a Banach space with an unconditionally monotone, uniformly smooth basis $\{e_i\}$ and with $\{e_i^*\}$ a quasi-uniformly smooth basis for X^* . Then any nontrivial M-ideal in B(X) must contain K(X), and B(X) does not contain any nontrivial M-summands.

PROOF. Let f_{ij} denote the functional with a one in the ij place and zeros elsewhere. We claim that $[f_{ij}: \text{all } i,j] = K(X)^*$. For suppose the contrary, i.e., suppose that there exists an $f \in K(X)^*$ which is not a uniform limit of finite matrix elements of $K(X)^*$. Since $\{e_i\}$ is shrinking, we can assume w.l.g. that $||f_n||\downarrow 1$, where f_n is the functional formed from f by deleting the first n rows and columns from the matrix for f. Pick $\delta < 1$ corresponding to $\epsilon = 1/2$ in the definition of a uniformly smooth basis. Then pick N such that $||f_N|| < (1 + \frac{3}{4}\delta)/(1 + \frac{1}{2}\delta)$ and choose T and U norm one, disjoint operators (i.e. $\exists m$ such that $t_{ij} = 0$ if i or j > m and $u_{ij} = 0$ if i or j < m) with both $f_N(T)$ and $f_N(U) > 1 - \delta/8$. Then,

$$\frac{f_N(T+\delta U)}{\|T+\delta U\|} > \frac{1+\frac{3}{4}\delta}{1+\frac{1}{2}\delta},$$

which is a contradiction. Hence, $[f_{ij}: all \ i,j] = K(X)^*$.

Each f_{ij} must be extreme in the unit ball of $K(X)^*$, for suppose that $f_{ij} + g$ has a one in the ij place and an $\varepsilon > 0$ in the kl place. For this ε , let δ be the smaller of the smoothness δ 's for $\{e_i\}$ and $\{e_i^*\}$. Then for T, the operator with $t_{ij} = 1$, $t_{kl} = \delta$, and zeros elsewhere, we have $(f_{ij} + g)T = 1 + \delta \varepsilon$ and $||T|| < 1 + \delta \varepsilon$.

In [4] it was shown that if X has an unconditionally monotone, uniformly smooth basis, then K(X) is an HB-subspace of B(X).

Now suppose that J is a nontrivial M-ideal in B(X). Each f_{kl} is extreme in the unit ball of $K(X)^*$ and hence, by Lemma 1.7, each f_{kl} must be in J_* or

 J^{\perp} . Let $T \neq 0$ be in J and pick f_{ij} : $f_{ij}(T) \neq 0$. Then f_{ij} must be in J_{*} . Next suppose that some $f_{mn} \in J^{\perp}$. This would contradict the fact that J is an M-ideal, since $||f_{ij} + f_{mj}||$ and $||f_{mn} + f_{mj}||$ both have norm less than 2 by Lemma 2.3 and the smoothness hypotheses. Thus, $[f_{ij}: \text{all } i,j] \subset J_{*}$ and by Lemma 1.5 $K(X) \subset J$.

B(X) has no nontrivial M-summands since, for each norm one $U \in B(X)$, \exists an operator E_{ij} with a one in the ij place and zeros elsewhere such that $||U + E_{ij}|| > 1$.

COROLLARY 2.6. For X = d(a, p), any Lorentz sequence space with 1 , the hypotheses of Theorem 2.5 are satisfied.

PROOF. To see that the basis $\{e_i^*\}$ is quasi-uniformly smooth, note that for each $\delta > 0$, $e_i^* + \delta e_j^*$ will achieve its norm on an element of the form $(e_i + \lambda_\delta e_j)/\|e_i + \lambda_\delta e_j\|$, such that $\lambda_\delta \to 0$ as $\delta \to 0$. The basis $\{e_i\}$ is uniformly smooth, since $\|x + y\|^p \le \|x\|^p + \|y\|^p$, whenever x and y are disjoint.

COROLLARY 2.7. For each j let X_j be a space with an unconditionally monotone, uniformly smooth basis $\{e_i^j\}$ and a quasi-uniformly smooth basis $\{e_i^j\}$ such that for each $\epsilon > 0$, there is a common smoothness δ for all j. Then the hypotheses of Theorem 2.5 are satisfied for $(\sum_{j=1}^{\infty} \bigoplus X_j)_L$.

BIBLIOGRAPHY

- 1. E. M. Alfsen and E. Effros, Structure in real Banach spaces, Ann. of Math. (2) 96 (1972), 98-173.
- 2. J. Hennefeld, The Arens products and an imbedding theorem, Pacific J. Math. 29 (1969), 551-563.
- 3. _____, A decomposition for $B(X)^*$ and unique Hahn-Banach extensions, Pacific J. Math. 46 (1973), 197-199.
 - 4. _____, K(X) as a subspace of B(X), Indiana Univ. Math. J. (to appear).
- 5. R. Holmes, B. Scranton, and J. D. Ward, Approximation from the space of compact operators and other M-ideals, Duke Math. J. 42 (1975), 259-269.
- 6. I. Maddaus, On completely continuous linear transformations, Bull. Amer. Math. Soc. 44 (1938), 279-282.
- 7. R. R. Smith and J. D. Ward, M-ideal structure in Banach algebras, J. Functional Analysis 27 (1978), 337-349.
 - 8. _____, M-ideals in $B(l_p)$, Pacific J. Math. (to appear).

DEPARTMENT OF MATHEMATICS, BROOKLYN COLLEGE, CUNY, BROOKLYN, NEW YORK 11210