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A NOTE ON M-IDEALS IN B(X)

JULIEN HENNEFELD

Abstract. In this paper we prove some properties of M-ideals and HB-sub-

spaces in an arbitrary Banach space. We then apply these properties to

prove a theorem which generalizes to other spaces Smith's and Ward's

results in [8]: for 1 <p < oo, B(lp) contains no nontrivial summands and

that each nontrivial M-ideal in B{lp) contains K(lp).

Introduction. A closed subspace J of a Banach space Y is said to be an

M-ideal of Y if its annihilator J± is /, complemented in Y*. That is, there

exists a subspace J+ of Y* such that Y* = JL ® /„ and \\p + q\\ = \\p\\ +

||91| whenever p E J± and q E J^. J is said to be an M-summand if / is

complemented by a closed subspace J' such that \\p + q\\ = max(||/>||, ||<7||)

whenever/» E J and q E J'. M-summands are M-ideals, though the reverse is

not necessarily true. These concepts, first introduced for real Banach spaces

in [1], also apply to complex Banach spaces. Recently, much interest has

focused on the approximation properties of M-ideals [5], [7].

For a Banach space X, let K(X) and B(X) denote the spaces of compact

operators and all bounded operators respectively. In [3], Hennefeld showed

that for X = c0 or lp, 1 <p < oo, K(X) is an M-ideal in B(X). In [8], Smith

and Ward proved that, for 1 <p < oo, B(X) contains no nontrivial M-

summands, and that any nontrivial M-ideal must contain K(lp). Their proof

used Tarn's characterization of Hermitian operators in B(lp), p =£ 2, the fact

that K(lp) is the only two-sided ideal in B(lp), and their technique of

investigating Banach algebra (with identity) M-ideals by looking at the

associated Hermitian projections (this technique involves consideration of

B(lp)** and the Arens multiplication). In our proof of the generalization of

the Smith-Ward result, we use instead some elementary properties of M-

ideals and HB-subspaces, given in §1, and certain manipulations on matrices.

1. Some properties of M-ideals and HB-subspaces. The notion of HB-sub-

spaces, first defined in [4], is a generalization of M-ideals. Moreover, in [4], it

was shown that for certain Banach spaces K(X) is only an HB-subspace, not

an M-ideal, in B(X).

Definition 1.1. A closed subspace H of a Banach space Y is called an

HB-subspace if its annihilator H x is complemented by a subspace H+ such

that for each/ E Y*, \\f\\ > ||/J| and ||/|| > ||/J| whenever / = /, + f±

with/^ E Ht and/x nonzero EH±.
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We then have the following straightforward lemmas, some of which we

merely state without proof.

Lemma 1.2. // H is an HB-subspace of Y, then each <b E H* has a unique

norm-preserving extension to Y.

Lemma 1.3. Let H be an HB-subspace. Then f E //,<=> ||////|| = \\f\\.

Proof. (<=) Let/ satisfy \\f/H\\ = ||/||. Write/ = /„ + f±. For e > 0, 3

norm one x E H: \\f\\ - e <f(x) = /,(*) + f±(x) =/,(*). Hence, ||/J| =

U/H, ||/x||=0 and/ = /,.
(=>) For/ G H,., let g = f/H and g be a Hahn-Banach extension of g to

Y. By the previous part of the proof, g G Ht. But / — g is in both H¡ and

H\ which implies/ - g = 0. Thus, \\f/H\\ = ||/||.

The proof of the above lemma shows how to obtain the decomposition for

an arbitrary g G Y*, namely: g„ is the unique Hahn-Banach extension of g

restricted to //, and g± = g — g+. Hence, we have the following lemma.

Lemma 1.4. If H is an HB-subspace, then Ht is isometric to H*.

Lemma 1.5. If H is an HB-subspace, and J is an M-ideal with H, c J+, then

H cJ.

Proof. First, we claim that J x c H x. To see this, suppose g ^ 0 is in / ±.

Write g = gH + gH±. Note that gH± cannot be 0, since //„ c /„; also if

gH = 0, then we are finished. Hence, we can suppose gH and gH are both

nonzero. Then,

II-**. + #11 = II** J < IK"J + ll&# J    (since#", is nonzero)

^ |_£// I + ||#||    (since H is an HB-subspace).

But -gH   E Jn, g E Jx contradicts the fact that J is an A/-ideal. Hence,

J±J- c /i-1--1. Finally, H c J, since // = //±x n y, / = J±JL n K

Lemma 1.6. Lei / èe a« M-ideal of Y andf E Y*. Then f is an extreme point

of the unit ball of Y* of is in Jm or Jx and is an extreme point of the unit ball

ofJmorJ±.

Lemma 1.7. Let H be an HB-subspace and J an M-ideal. If f E Ht is an

extreme point of the unit ball of //„, then f is in /„ or J±.

2. The generalization.

Definition 2.1. A basis {e¡} is called shrinking if the biorthogonal func-

tional {e*} form a basis for X*.

Definition 2.2. A basis {e¡} for a Banach space is called unconditionally

monotone if ||2,e/4uBa,e,.|| > HS/e^e,!! for a\\A and B.

If X has a shrinking basis {e,}, then it follows from [6] that the operators

with finite matrices are norm dense in K(X). Hence, in this case, we can

associate a matrix to each / G K(X)* such that / is determined by its matrix.
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Lemma 2.3. Let X have an unconditionally monotone, shrinking basis.

(1) For each f E K(X)*, the functional obtained from the matrix of f by

replacing with zeros any set of rows or columns will have norm < \\f\\.

(2) If a matrix in K(X) consists of a single nonzero column (row), its norm in

K(X) is equal to its norm as an element of X (X*).

(3) If a matrix in K(X)* consists of a single nonzero column (row), its norm

in K(X)* is equal to its norm as an element of X* (X**).

These facts are proved in [2].

Definition 2.4. We shall call a basis {<?,} uniformly smooth if, for each

e > 0, 35 > 0 such that ||x + v|| < 1 + e|| v|| whenever x and y have disjoint

supports, ||x|| = 1 and ||.y|| < 8. We shall call {e¡} quasi-uniformly smooth if,

for each e > 0, 35 > 0 such that \\e¡ + Ae,-|| < 1 + 5e for all i,j, whenever

|X| < 8. Note that if a basis is uniformly smooth, the Banach space itself need

not be uniformly smooth. For example, consider the standard basis for c0.

The following is a generalization of the Smith-Ward result, since the

hypotheses of the theorem are satisfied if X is lp, 1 <p < oo.

Theorem 2.5. Let X be a Banach space with an unconditionally monotone,

uniformly smooth basis {e,} and with {e*} a quasi-uniformly smooth basis for

X*. Then any nontrivial M-ideal in B(X) must contain K(X), and B(X) does

not contain any nontrivial M-summands.

Proof. Let L denote the functional with a one in the ij place and zeros

elsewhere. We claim that [/•,: all ij] = K(X)*. For suppose the contrary, i.e.,

suppose that there exists an / E K(X)* which is not a uniform limit of finite

matrix elements of K(X)*. Since {e¡} is shrinking, we can assume w.l.g. that

|| .OIL where/, is the functional formed from/by deleting the first n rows

and columns from the matrix for/. Pick 8 < 1 corresponding to e = 1/2 in

the definition of a uniformly smooth basis. Then pick N such that \\fN\\ < (1

+ f 5)/(l + ¿5) and choose T and U norm one, disjoint operators (i.e. 3m

such that ty = 0 if i OTj > m and utj = 0 if /' or/ < m) with both/^T) and

fN(U)> 1 - 5/8. Then,

fN(T+8U)      1+4-5

\\T+8U\\        1+I5'

which is a contradiction. Hence, [/-,: all ij] = K(X)*.

Each/, must be extreme in the unit ball of K(X)*, for suppose that/-, + g

has a one in the ij place and an e > 0 in the kl place. For this e, let 5 be the

smaller of the smoothness 5's for {e,} and {e*}. Then for T, the operator with

Uj = 1> '*/ = à> ana" zeros elsewhere, we have (/-, + g)T = 1 + 5e and \\T\\ <

1 + 5e.

In [4] it was shown that if X has an unconditionally monotone, uniformly

smooth basis, then K(X) is an HB-subspace of B(X).

Now suppose that / is a nontrivial M-ideal in B(X). Each/W is extreme in

the unit ball of K(X)* and hence, by Lemma 1.7, each/y must be in J'„ or
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J^. Let 7 ¥= 0 be in J and pick/y: f/J) ¥* 0. Then/,, must be in /„. Next

suppose that some /„, G 7X. This would contradict the fact that / is an

M-ideal, since ||/y + fmj\\ and H/^ +/v-|| both have norm less than 2 by

Lemma 2.3 and the smoothness hypotheses. Thus, [fy all ij] c /„ and by

Lemma 1.5 K(X) c J.

B(X) has no nontrivial M-summands since, for each norm one U E B(X),

3 an operator Ei} with a one in the ij place and zeros elsewhere such that

\\u+e9\\>\. J

Corollary 2.6. For X = d(a,p), any Lorentz sequence space with 1 <p <

oo, the hypotheses of Theorem 2.5 are satisfied.

Proof. To see that the basis {ef} is quasi-uniformly smooth, note that for

each 5 > 0, e* + 8ey~ will achieve its norm on an element of the form

(e¡ + Xgey)/1|e¡ + A5e,||, such that Xs —> 0 as 8 -* 0. The basis {e,} is uniformly

smooth, since ||x + y\\p < \\x\\p + \\y\\p, whenever x and v are disjoint.

Corollary 2.7. For each j let Xj be a space with an unconditionally

monotone, uniformly smooth basis {e/} and a quasi-uniformly smooth basis

{ef*} such that for each e > 0, there is a common smoothness 8 for all j. Then

the hypotheses of Theorem 2.5 are satisfied for (XJL\ ® Xj)l-
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