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MONOTONE OPERATOR FUNCTIONS ON ARBITRARY SETS

WILLIAM F. DONOGHUE, JR.

Abstract. We give a new proof of a result of Chandler which shows that a

monotone operator function defined on a set J admits an analytic continua-

tion to the upper and lower half-planes, and that this continuation is a Pick

function, real and regular on the convex hull of J.

Let y be a subset of the real axis and fix) a real-valued function defined on

/. If H is a selfadjoint operator on Hilbert space having a spectrum contained

in /, the operator/(//) is defined by the usual operational calculus:

f(H) = ff(X)dEx

where Ex is the resolution of the identity corresponding to H. Here /(//) is

defined only if fix) is subject to certain mild measurability conditions.

However, in the special case when the Hilbert space is finite dimensional, no

measurability conditions need be imposed for /(//) to make sense, and

indeed, if H is represented by a diagonal matrix with eigenvalues A,., then

/(//) is represented by another diagonal matrix with eigenvalues/(A,).

The function fix) is said to be a monotone matrix function of order « if, for

any «-dimensional Hilbert space and any pair of selfadjoint operators A and

B on that space having their spectra in J, the operator inequality A < B

implies f(A) < f(B). The function fix) is called a monotone operator function

if a similar assertion holds for infinite dimensional Hilbert space.

In the special case when the set J is an open interval of the real axis the

theory of monotone operator functions and monotone matrix functions is

more or less complete. A theorem of Bendat and Sherman [1] asserts that the

monotone operator functions defined on the interval J are exactly those

functions that are monotone matrix functions of all orders on the interval. A

well-known theorem of Loewner [6] then guarantees that these functions are

precisely those real functions on the interval J which admit an analytic

continuation throughout the upper half-plane having a positive imaginary

part in that half-plane. The functions are also continuable by reflection across

J to the lower half-plane. Since every Pick function, (i.e., one analytic in the

upper half-plane with positive imaginary part) admits a unique canonical

representation of the form

/(2).,„ + /)+JÍ_J_._AT *W (D
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where a > 0, ß is real and dp is a positive measure for which the function

(X2 + 1)_1 is integrable, all monotone operator functions on J have such a

representation. It is easy to verify that a function of the form (1) is a

monotone operator on J if and only if the corresponding measure puts no

mass in the open interval /.

In recent years there has been considerable interest in the study of

monotone operator functions defined on J when / is an arbitrary open set.

Let (a¡, b¡) be the constituent intervals of J. If f(x) is a monotone operator

function on J it is surely a monotone operator function on each of the

constituent intervals and so admits, from each such interval, an analytic

continuation to the upper half-plane. It is tempting to suppose that the

continuation so obtained is independent of the interval in question, i.e., that

f(x) is of the form (1) where the measure dp puts no mass in the open set J.

That this is in fact the case is one of the consequences of work of Rosenblum

and Rovnyak [7]. Their result has been extended by Chandler [2] who has

shown that in fact the measure dp puts no mass in the convex hull of /. His

results depend on the deep investigations of Rosenblum and Rovnyak as well

as results of Smul'jan [8] which in turn depend on studies of Davis ([3], [4]).

We give here a simpler proof of Chandler's theorem in the spirit of the

original work of Loewner. Here, if J is a set, c(J) is its convex hull.

Chandler's Theorem. A monotone operator function f(x) defined on the

open set J is of the form (1) where the measure dp puts no mass in the open

interval c(J). The function is therefore the restriction to J of a monotone

operator function on c(J).

Proof. We first establish the theorem under the additional hypothesis that

7 is a bounded set. Let (a', b') and (a", b") be two constituent intervals of J;

we may suppose that (a', b') is the one on the left. Select a dense sequence

{x'k} in (a',bf) and another sequence {xk} dense in (a", b"). Let e„ be a

sequence of positive numbers converging rapidly to 0 and let ^(x) be a

monotone operator function defined on c(J) which is not rational. It is easy

to find such a function, since any function of the form (1) where the measure

has no mass in the interval c(J) and is not a finite collection of point masses

will do.

For each positive integer n consider the set

S„ =  (X], X2, X3, . . . , X„, X] , X2,X3 , . . . , xn j

consisting of 2« points of J and let <p„(z) be a rational function of degree at

most 2« satisfying the 2n equations

and

<pn(o =/«) + *,,*(*;)•
That such a function exists and is uniquely determined has been established

by Loewner [6]. See also [5]. It is known that <pn(z) is of degree exactly 2n and
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that it has a positive imaginary part in the upper half-plane. It is real on the

real axis and has all of its poles there. It is important to notice that these poles

are outside the interval (xj, x„'). A well-known theorem guarantees that the

sequence <p„(z) has a subsequence converging uniformly on compact subsets

of the upper half-plane and also uniformly on compact subsets of the interval

(a', b"). The limiting function F(x) is manifestly also of the form (1) and

coincides with f(x) on the intervals (a', b') and (a", b"). The associated

measure has no mass in the interval (a', b"). Thus F(x) is a monotone

operator function when considered on the interval (a', b"). Since the choice

of the subintervals (a', b') and (a", b") was arbitrary, it is clear that the

analytic continuation of f(x) from a constituent interval of J to the half-plane

is independent of the choice of the interval, and that the monotone operator

function so obtained admits a representation (1) with the associated measure

putting no mass in any interval of the form (a¡, b) where a, < ¿>-. This means

that dp has no mass in the convex hull of /.

In the case when J is not bounded, we consider first fN(x), the restriction of

f(x) to the intersection of J with the interval (-N, N). It is clear that the

analytic continuation of fN(x) to the half-plane is independent of N. It is also

clear that the measure dp associated with that analytic continuation has no

mass in the convex hull of the part of J in (-N, N), and since N is arbitrary,

there is no mass in c(J), as asserted. This completes the proof.

It is interesting to note that if c(J) is the whole axis then/(x) is necessarily

a linear function with nonnegative slope.

A review of the previous proof makes it clear that we made very little use

of the hypothesis that J was an open set. Suppose, for example, that / is an

arbitrary set such that c(J) is the open interval (a, b), where we do not

exclude the possibility of one or more endpoints at infinity. The construction

of the sequence <pn(z) is still possible, selecting the x'k near a and the x'k near

b. The existence of the functions tp„(z) depends only on the positivity of

certain "Loewner determinants" associated with the points of Sn and this is

an algebraic, rather than an analytical fact. See [5]. Thus, as in the proof of

Chandler's theorem, we find that when c(J) = (a, b) a monotone operator

function defined on / is the restriction to that set of a monotone operator

function on c(J).

Circumstances are slightly different when c(J) is closed on the left, say

c(J) = [a, b). In this case we form the sequence <p„(z) as before, only always

taking x'x as a, a point of /. The corresponding sequence of Pick functions

<p„(z) has a convergent subsequence and the limiting function F(x) coincides

with the initial f(x) on J, except, perhaps, at the point a where the inequality

will read F(a) > f(a).

In a similar way we find that if c(J) is of form (a, b] then/(x) coincides on

J with a Pick function throughout the interval, except, perhaps, at the right

hand end point where the inequality F(b) < f(b) is valid. It is also obvious

how to treat the case when c(J) is a closed interval. We have therefore

established the following result.
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Generalized Chandler Theorem. Let J be an arbitrary subset of the real

axis and c(J) its convex hull and let fix) be a monotone operator function

defined on J. Then there exists a function F(x) of the form (1) so that

F(x) = fix) at all points of J in the interior of c(J) and satisfying the

inequalities F(z) > fiz) and F(b) < fib). The function F(x) is associated with a

measure dp, that puts no mass in c(J).

As a special case of this theorem we obtain a result of Smul'jan [8]: if J

consists of a point a and an interval (b, c) where a < b and fix) is a

monotone operator function on J, then fix) admits an extension F(x) to a

moonotone operator function defined on [a, c) which coincides with fix) on

(b, c) and satisfies the inequality F(a) > fia).
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