THERE ARE NO Q-POINTS IN LAVER'S MODEL FOR THE BOREL CONJECTURE

ARNOLD W. MILLER

ABSTRACT. It is shown that it is consistent with ZFC that no nonprincipal ultrafilter on ω is a Q-point (also called a rare ultrafilter).

All ultrafilters are assumed to be nonprincipal and on ω .

DEFINITIONS. (1) U is a Q-point (also called rare [C]) iff $\forall f \in \omega^{\omega}$ if f is finite-to-one then $\exists X \in U, f \upharpoonright X$ is one-to-one.

- (2) U is a P-point iff $\forall f \in \omega^{\omega}$, $\exists X \in U, f \upharpoonright X$ is constant or finite-to-one.
- (3) U is a semi-Q-point (also called rapid [C], iff $\forall f \in \omega^{\omega}$, $\exists g \in \omega^{\omega}$, $\forall n \ f(n) < g(n) \ \text{and} \ g'' \omega \in U$.
 - (4) U is semiselective iff it is a P-point and a semi-Q-point.
 - (5) For $f, g \in \omega^{\omega}$, $[f < g \text{ iff } \exists n \ \forall m > n \ (f(m) < g(m))].$
 - (6) For $\mathfrak{F} \subseteq \omega^{\omega}$, $[\mathfrak{F} \text{ is dominant iff } \forall f \in \omega^{\omega} \exists g \in \mathfrak{F} \ (f < g)].$

THEOREM 1 (KETONEN [Ke]). If every dominant family has cardinality 2^{\aleph_0} , then there exists a P-point.

THEOREM 2 (MATHIAS, TAYLOR [M3]). If there exists a dominant family of cardinality \aleph_1 , then there exists a Q-point.

Kunen [Ku1] showed that adding \aleph_2 random reals to a model of ZFC + GCH gives a model with no semiselective ultrafilters. More recently he showed [Ku2] that if one first adds \aleph_1 Cohen reals (then the random reals) then the resulting model has a P-point. In either case one has a dominant family of size \aleph_1 so there is a Q-point.

THEOREM 3. The following are equivalent:

- (1) U is a semi-Q-point.
- (2) Given $P_n \subseteq \omega$ finite for $n < \omega$ there exists $X \in U$ such that $\forall n, |X \cap P_n| \le n$.
- (3) $\exists h \in \omega^{\omega}$ such that given $P_n \subseteq \omega$ finite for $n < \omega$ there exists $X \in U$ such that $\forall n, |X \cap P_n| \leq h(n)$.

PROOF. (1) \Rightarrow (2). Let $f(n) = \sup(\bigcup_{m \le n} P_m) + 1$. Suppose that for all n, g(n) > f(n); then $P_n \cap g'' \omega \subseteq \{g(0), \ldots, g(n-1)\}$.

 $(3) \Rightarrow (1)$. Assume f increasing. Choose $n_0 < n_1 < n_2 < \cdots$, so that $h(k+1) < n_k$. Let $P_k = f(n_k)$ and let $Y \in U$ so that $|Y \cap P_k| \le h(k)$. Then, for each $m \ge n_0$, $|Y \cap f(m)| < m$, since if $n_k \le m < n_{k+1}$ then

Received by the editors April 3, 1978.

AMS (MOS) subject classifications (1970). Primary 02K05.

$$|Y \cap f(n_{k+1})| \leq h(k+1) < n_k \leq m.$$

Hence if $g \in \omega^{\omega}$ enumerates $Y - f(n_0 + 1)$ in increasing order then $\forall n$, f(n) < g(n). \square

Define $U \times V = \{A \subseteq \omega \times \omega : \{n : \{m : (n, m) \in A\} \in V\} \in U\}$. Whilst $U \times V$ is never a P-point or a Q-point, nevertheless:

THEOREM 4. $U \times V$ is a semi-Q-point iff V is a semi-Q-point.

PROOF. (\Rightarrow) Given $P_k \subseteq \omega$ finite let $P_k^* = \{\langle n, m \rangle : m \in P_k \text{ and } n \leq m \}$. Choose $Z \in U \times V$ so that $\forall k, |Z \cap P_k^*| \leq k$. Let $n \in \omega$ so that $Y = \{m \geq n : (n, m) \in Z\} \in V$ then $\forall k, |Y \cap P_k| \leq k$. (More generally if $f_*U = V$ and U is a semi-Q-point and f is finite-to-one then V is a semi-Q-point.)

 (\Leftarrow) Given $P_k \subseteq \omega^2$ finite, choose n_k increasing so that $P_k \subseteq n_k^2$. Let $Y \in V$ so that $\forall k, |n_k \cap Y| \leq k$. Let $Z = \bigcup_{k < \omega} \{k\} \times \{m: m \in Y \text{ and } m > n_k\}$ then

$$Z \cap P_k \subseteq Z \cap n_k^2 \subseteq k \times (n_k \cap Y)$$

which has cardinality $\leq (k+1)^2$. \square

THEOREM 5. In Laver's model N for the Borel conjecture [L] there are no semi-Q-points.

PROOF. Some definitions from [L]:

- (1) $T \in \mathcal{F}$ iff T is a subtree of $\omega^{<\omega}$ with the property that there exist $s \in T$ (called stem T) so that $\forall t \in T$, $t \subseteq s$ or $s \subseteq t$, and if $t \supseteq s$ and $t \in T$ then there are infinitely many $n \in \omega$ such that $t \land (n) \in T$.
 - (2) $\hat{T} \ge T$ iff $\hat{T} \subseteq T$.
 - (3) $T_s = \{t \in T: s \subseteq t \text{ or } t \subseteq s\}.$
 - (4) $T^0 > \hat{T}$ iff $T > \hat{T}$ and they have the same stem.
 - (5) For $x < y < \omega$ let $[x, y) = \{n < \omega : x \le n < y\}$.

LEMMA 1. Suppose we are given $T \in \mathcal{F}$ and finite sets F_s for each $s \in T - \{\emptyset\}$ such that for each $s \in T - \{\emptyset\}$:

- (a) if $s = (k_0, \ldots, k_n, k_{n+1})$, then $F_s \subseteq [k_n, k_{n+1})$;
- (b) if $s = \langle n \rangle$, then $F_s \subseteq [0, n)$;
- (c) $\exists N < \omega \ \forall t$ immediately below s in $T|F_t| \leq N$. For any $\hat{T} > T$ let $H_{\hat{T}} = \bigcup \{F_s : s \in \hat{T}\}$. Then $\exists T^1, T^0 \geq T$ such that $H_{T^0} \cap H_{T^1}$ is finite.

PROOF. We may as well assume that the stem of T is \emptyset . Given Q any infinite family of sets of cardinality $< N < \omega$ there exists G, |G| < N, $\exists \hat{Q} \subseteq Q$ infinite so that $\forall F, \hat{F} \in \hat{Q}, F \cap \hat{F} \subseteq G$ (i.e., a Δ -system). Now trim T to obtain $\hat{T} > T$ so that $\forall s \in T, \exists G_s \subseteq [k_n, \omega]$ finite $(s = (k_0, \ldots, k_n))$ and for all t, \hat{t} immediately below s in $\hat{T}, (F_t \cap F_t) \subseteq G_s$. Build two sequences of finite subtrees of \hat{T} :

$$T_n^0 \subseteq T_{n+1}^0 \cdot \cdot \cdot , \qquad T_n^1 \subseteq T_{n+1}^1 \cdot \cdot \cdot$$

so that

$$\left[\bigcup_{s\in\mathcal{T}_n^0}(F_s\cup G_s)\right]\cap\left[\bigcup_{s\in\mathcal{T}_n^1}(F_s\cup G_s)\right]\subseteq G_{\varnothing}$$

and $\bigcup_{n<\omega}T_n^i=T^i>\hat{T}$ for i=0,1.

This is done as follows: Suppose we have T_n^0 , T_n^1 and we are presented with $s \in T_n^0$ and asked to add an immediate extension of s to T_n^0 . Then since $\{F_t - G_s: t \text{ immediately below } s \text{ in } \hat{T}\}$ is a family of disjoint sets and $G_t \subseteq [k_n, \omega]$ where $t = (k_0, \ldots, k_n)$ we can find infinitely many t immediately below s in \hat{T} so that

$$\left[(F_t - G_s) \cup G_t \right] \cap \left[\bigcup_{s \in T_s^1} (F_s \cup G_s) \right] = \emptyset. \quad \Box$$

The above is a double fusion argument.

Some more definitions from [L]:

- (1) Fix a natural ω -ordering of $\omega^{<\omega}$ and for any $T \in \mathcal{F}$ transfer it to $\{t \in T: \text{ stem } T \subseteq t\}$ in a canonical fashion. $T\langle n \rangle$ denotes the *n*th element of $\{t \in T: \text{ stem } T \subseteq t\}$.
 - (2) $\hat{T}^n \geqslant T$ iff $\hat{T} \geqslant T$ and $\forall i \geqslant n$, $\hat{T}\langle i \rangle = T\langle i \rangle$.
- (3) The p.o. \mathbf{P}_{ω_2} is the ω_2 iteration of \mathscr{F} with countable support $(p \upharpoonright_{\alpha} \Vdash "p(\alpha) \in \mathscr{F}^{M[G_{\alpha}]}"$ for all α and $\operatorname{supp}(p) = \{\alpha : p(\alpha) \neq \omega^{<\omega}\}$ is countable).
- (4) For K finite and $n < \omega$, $p_K^n > q$ iff $[p > q \text{ and } \forall \alpha \in K, p \upharpoonright_{\alpha} \Vdash "p(\alpha)]^n > q(\alpha)"].$

LEMMA 2. Let f be a term denoting the first Laver real and τ any term. If $p \in \mathbf{P}_{\omega_2}$ and $p \Vdash "\tau \in \omega^{\omega}$, $\forall n \ (f(n) < \tau(n))$ and τ increasing" then $\exists Z_0, \ Z_1$ such that $Z_0 \cap Z_1$ is finite and $\exists p_0, \ p_1 \geqslant p$ such that $p_i \Vdash "\tau\omega \subseteq Z_i$ " for i = 0, 1.

PROOF. Construct a sequence $p \leq_{K_0}^0 p_n \leq_{K_n}^0 p_{n+1}$ so that $\bigcup_{n < \omega} K_n = \bigcup_{n < \omega} \operatorname{supp}(p_n)$ and $0 \in K_0$. Having gotten p_n , let $s = (k_0, \ldots, k_m)$ be $p_n(0) \langle n \rangle$. Fix $t = (k_0, \ldots, k_m, k_{m+1})$ in $p_n(0)$. Then for each $i \leq m+1$,

$$p_t = \langle p_n(0)_t \cap p_n \upharpoonright [1, \omega_2) \rangle \Vdash "\tau(i) \geqslant k_{m+1} \text{ or } \bigvee_{1 \le k_{m+1}} \tau(i) = l$$
".

Hence by applying Lemma 6 of [L] m+2 many times we can find $q_{tK_n} > p_t$ and $F_t \subseteq [k_m, k_{m+1}]$ such that $|F_t| < (m+2)(n+1)^{|K_n|}$ and $q_t \Vdash "\tau" \omega \cap [k_m, k_{m+1}) \subseteq F_t$ ". (Note $p_t \Vdash "\forall i > m+1$, $\tau(i) > k_{m+1}$ "). Let $p_{n+1}(0) = (p_n(0) - p_n(0)_s) \cup \bigcup \{q_t(0): t \text{ is immediately below } s \text{ in } p_n(0)\}$. Let $p_{n+1}[1, \omega_2)$ be a term denoting $q_t \upharpoonright [1, \omega_2)$ if $q_t(0)$ or $p_n \upharpoonright [1, \omega_2)$ if $p_n(0) - \{t: s \subseteq t\}$. Hence $p_{n+1} \upharpoonright k_n > p_n$. Now let \hat{p} be the fusion of the sequence of p_n (see [L, Lemma 5]). Then for each $t \in \hat{p}(0)$ if $t = \langle k_0, \ldots, k_m, k_{m+1} \rangle$ and $t \supseteq \text{stem } \hat{p}(0)$, then $\langle \hat{p}(0)_t \cap \hat{p} \upharpoonright [1, \omega_2) \rangle \Vdash "\tau" \omega \cap [k_n, k_{n+1}) \subseteq F_t$ ". For $t \in \hat{p}(0)$ and $t \subseteq \text{stem } \hat{p}(0)$ let $F_t = k_{m+1}$. Applying Lemma 1 obtain $T_0, T_1 > \hat{p}(0), Z_0$ and Z_1 such that $Z_0 \cap Z_1$ is finite, and $\langle T_i \cap p \upharpoonright [1, \omega_2] \rangle \Vdash "\tau" \omega \subseteq Z_i$ " for i = 0, 1. \square

PROOF OF THEOREM 5. Suppose $M[G_{\omega_1}] \Vdash "U$ is a semi-Q-point". Applying an argument of Kunen's we get $\alpha < \omega_2$ such that $U \cap M[G_\alpha] \in M[G_\alpha]$. $(M[G_{\beta}] \Vdash$ "CH" for all $\beta < \omega_2$ so construct using ω_2 -c.c., $\alpha_{\lambda} < \omega_2$ for $\lambda < \omega_1$ so that $\forall x \in M [G_{\alpha_{\lambda}}] \cap 2^{\omega}$, $P_{\alpha_{\lambda+1}}$ decides " $x \in U$ ". Let $\alpha = \sup \alpha_{\lambda}$. Note $M[G_{\alpha}] \cap 2^{\omega} = \bigcup_{\beta < \alpha} M[G_{\beta}] \cap 2^{\omega}$ since \aleph_1 is not collapsed.) By [L, Lemma 11] we may assume $U \cap M \in M$. But Lemma 2 clearly implies that for any V ult. in M, $M[G_{\omega_2}] \Vdash$ "no extension of V is a semi-Q-point." \square

- REMARKS. (1) A similar argument shows that in the model gotten by ω_2 iteration of Mathias forcing with countable support there are no semi-Qpoints. In fact, as Mathias later pointed out to me, the appropriate argument needed is an easy generalization of Theorem 6.9 of [M2].
- (2) In [M1] Mathias shows $[\omega \to (\omega)^{\omega}] \Rightarrow$ [There are no rare filters or nonprincipal ultrafilters.]
- (3) In neither the Laver or Mathias models are there small dominant families so by Ketenon [Ke] there is a P-point. Also it is easily shown no ultrafilter is generated by fewer then &, sets.
- (4) Not long after the results of this paper were obtained, Shelah showed that it is consistent that no P-points exist [W]. In his model there is a dominant family of size \aleph_1 , so there are Q-points. It remains open whether or not it is consistent that there are no P-points or Q-points.

Conjecture. Borel conjecture \Leftrightarrow there does not exist a semi-Q-point.

REFERENCES

- [C] G. Choquet, Deux classes remarquables d'ultrafiltres sur N, Bull. Sci. Math. 92 (1968), 143-153.
- [Ke] J. Ketenon, On the existence of P-points in the Stone-Cech compactification of integers, Fund. Math. 62 (1976), 91.
 - [Ku1] K. Kunen, Some points in βN, Proc. Cambridge Philos. Soc. 80 (1976), 385-398.
 - ___, P pt's in random real extensions (to appear).
 - [L] R. Laver, On the consistency of Borel's conjecture, Acta Math. 137 (1976), 151-169.
- [M1] A. R. D. Mathias, Remark on rare filters, Infinite and Finite Sets, Colloq. Math. Soc. Janos Bolyai, North-Holland, Amsterdam, 1975.
 - [M2] _____, Happy families, Ann. Math. Logic 12 (1977), 59-111. [M3] _____, 0# and the P-point problem (to appear).

 - [R] J. Roitman, P-pts in iterated forcing extensions (to appear).
 - [W] E. Wimmers, The Shelah P-point independence theorem, Israel J. Math. (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706