THERE ARE NO Q-POINTS IN LAVER'S MODEL FOR THE BOREL CONJECTURE

ARNOLD W. MILLER

Abstract. It is shown that it is consistent with ZFC that no nonprincipal ultrafilter on ω is a Q-point (also called a rare ultrafilter).

All ultrafilters are assumed to be nonprincipal and on ω.
Definitions. (1) U is a Q-point (also called rare [C]) iff $\forall f \in \omega^{\omega}$ if f is finite-to-one then $\exists X \in U, f \upharpoonright X$ is one-to-one.
(2) U is a P-point iff $\forall f \in \omega^{\omega}, \exists X \in U, f \upharpoonright X$ is constant or finite-to-one.
(3) U is a semi- Q-point (also called rapid [C], iff $\forall f \in \omega^{\omega}, \exists g \in$ $\omega^{\omega}, \forall n f(n)<g(n)$ and $g^{\prime \prime} \omega \in U$.
(4) U is semiselective iff it is a P-point and a semi- Q-point.
(5) For $f, g \in \omega^{\omega},[f<g$ iff $\exists n \forall m>n(f(m)<g(m))]$.
(6) For $\mathscr{F} \subseteq \omega^{\omega}$, [\mathscr{F} is dominant iff $\left.\forall f \in \omega^{\omega} \exists g \in \mathscr{F}(f<g)\right]$.

Theorem 1 (Ketonen [Ke]). If every dominant family has cardinality $2^{\mu_{0}}$, then there exists a P-point.

Theorem 2 (Mathias, Taylor [M3]). If there exists a dominant family of cardinality \aleph_{1}, then there exists a Q-point.

Kunen [Ku1] showed that adding $\boldsymbol{\aleph}_{2}$ random reals to a model of ZFC + GCH gives a model with no semiselective ultrafilters. More recently he showed [Ku2] that if one first adds \aleph_{1} Cohen reals (then the random reals) then the resulting model has a P-point. In either case one has a dominant family of size κ_{1} so there is a Q-point.

Theorem 3. The following are equivalent:
(1) U is a semi-Q-point.
(2) Given $P_{n} \subseteq \omega$ finite for $n<\omega$ there exists $X \in U$ such that $\forall n,\left|X \cap P_{n}\right|$ $\leqslant n$.
(3) $\exists h \in \omega^{\omega}$ such that given $P_{n} \subseteq \omega$ finite for $n<\omega$ there exists $X \in U$ such that $\forall n,\left|X \cap P_{n}\right| \leqslant h(n)$.

Proof. (1) \Rightarrow (2). Let $f(n)=\sup \left(\cup_{m \leqslant n} P_{m}\right)+1$. Suppose that for all n, $g(n)>f(n)$; then $P_{n} \cap g^{\prime \prime} \omega \subseteq\{g(0), \ldots, g(n-1)\}$.
(3) \Rightarrow (1). Assume f increasing. Choose $n_{0}<n_{1}<n_{2}<\cdots$, so that $h(k+$ 1) < n_{k}. Let $P_{k}=f\left(n_{k}\right)$ and let $Y \in U$ so that $\left|Y \cap P_{k}\right| \leqslant h(k)$. Then, for each $m \geqslant n_{0},|Y \cap f(m)|<m$, since if $n_{k} \leqslant m<n_{k+1}$ then

$$
\left|Y \cap f\left(n_{k+1}\right)\right| \leqslant h(k+1)<n_{k} \leqslant m .
$$

Hence if $g \in \omega^{\omega}$ enumerates $Y-f\left(n_{0}+1\right)$ in increasing order then $\forall n$, $f(n)<g(n)$.

Define $U \times V=\{A \subseteq \omega \times \omega:\{n:\{m:(n, m) \in A\} \in V\} \in U\}$. Whilst $U \times V$ is never a P-point or a Q-point, nevertheless:

Theorem 4. $U \times V$ is a semi- Q-point iff V is a semi-Q-point.
Proof. (\Rightarrow) Given $P_{k} \subseteq \omega$ finite let $P_{k}^{*}=\left\{\langle n, m\rangle: m \in P_{k}\right.$ and $\left.n \leqslant m\right\}$. Choose $Z \in U \times V$ so that $\forall k,\left|Z \cap P_{k}^{*}\right| \leqslant k$. Let $n \in \omega$ so that $Y=\{m \geqslant$ $n:(n, m) \in Z\} \in V$ then $\forall k,\left|Y \cap P_{k}\right| \leqslant k$. (More generally if $f_{*} U=V$ and U is a semi- Q-point and f is finite-to-one then V is a semi- Q-point.)
(\Leftarrow) Given $P_{k} \subseteq \omega^{2}$ finite, choose n_{k} increasing so that $P_{k} \subseteq n_{k}^{2}$. Let $Y \in V$ so that $\forall k,\left|n_{k} \cap Y\right| \leqslant k$. Let $Z=\cup_{k<\omega}\{k\} \times\left\{m: m \in Y\right.$ and $\left.m>n_{k}\right\}$ then

$$
Z \cap P_{k} \subseteq Z \cap n_{k}^{2} \subseteq k \times\left(n_{k} \cap Y\right)
$$

which has cardinality $\leqslant(k+1)^{2}$.
Theorem 5. In Laver's model N for the Borel conjecture [L] there are no semi-Q-points.

Proof. Some definitions from [L]:
(1) $T \in \mathscr{F}$ iff T is a subtree of $\omega^{<\omega}$ with the property that there exist $s \in T$ (called stem T) so that $\forall t \in T, t \subseteq s$ or $s \subseteq t$, and if $t \supseteq s$ and $t \in T$ then there are infinitely many $n \in \omega$ such that $t\langle\langle n\rangle \in T$.
(2) $\hat{T} \geqslant T$ iff $\hat{T} \subseteq T$.
(3) $T_{s}=\{t \in T: s \subseteq t$ or $t \subseteq s\}$.
(4) $T^{0} \geqslant \hat{T}$ iff $T \geqslant \hat{T}$ and they have the same stem.
(5) For $x<y<\omega$ let $[x, y)=\{n<\omega: x \leqslant n<y\}$.

Lemma 1. Suppose we are given $T \in \mathscr{F}$ and finite sets F_{s} for each $s \in T$ $\{\varnothing\}$ such that for each $s \in T-\{\varnothing\}$:
(a) if $s=\left(k_{0}, \ldots, k_{n}, k_{n+1}\right)$, then $F_{s} \subseteq\left[k_{n}, k_{n+1}\right)$;
(b) if $s=\langle n\rangle$, then $F_{s} \subseteq[0, n)$;
(c) $\exists N<\omega \forall t$ immediately below s in $T\left|F_{t}\right| \leqslant N$. For any $\hat{T} \geqslant T$ let $H_{\hat{T}}=\cup\left\{F_{s}: s \in \hat{T}\right\}$. Then $\exists T^{1}, T^{0} \geqslant T$ such that $H_{T^{0}} \cap H_{T^{1}}$ is finite.

Proof. We may as well assume that the stem of T is \varnothing. Given Q any infinite family of sets of cardinality $\leqslant N<\omega$ there exists $G,|G| \leqslant N$, $\exists \hat{Q} \subseteq Q$ infinite so that $\forall F, \hat{F} \in \hat{Q}, F \cap \hat{F} \subseteq G$ (i.e., a Δ-system). Now trim T to obtain $\hat{T} \geqslant T$ so that $\forall s \in T, \exists G_{s} \subseteq\left[k_{n}, \omega\right]$ finite $\left(s=\left(k_{0}, \ldots, k_{n}\right)\right)$ and for all t, \hat{t} immediately below s in $\hat{T},\left(F_{t} \cap F_{t}\right) \subseteq G_{s}$. Build two sequences of finite subtrees of \hat{T} :

$$
T_{n}^{0} \subseteq T_{n+1}^{0} \cdots, \quad T_{n}^{1} \subseteq T_{n+1}^{1} \cdots
$$

so that

$$
\left[\bigcup_{s \in T_{n}^{0}}\left(F_{s} \cup G_{s}\right)\right] \cap\left[\bigcup_{s \in T_{n}^{\prime}}\left(F_{s} \cup G_{s}\right)\right] \subseteq G_{\varnothing}
$$

and $\cup_{n<\omega} T_{n}^{i}=T^{i} \geqslant \hat{T}$ for $i=0,1$.
This is done as follows: Suppose we have T_{n}^{0}, T_{n}^{1} and we are presented with $s \in T_{n}^{0}$ and asked to add an immediate extension of s to T_{n}^{0}. Then since $\left\{F_{t}-G_{s}: t\right.$ immediately below s in $\left.\hat{T}\right\}$ is a family of disjoint sets and $G_{t} \subseteq\left[k_{n}, \omega\right]$ where $t=\left(k_{0}, \ldots, k_{n}\right)$ we can find infinitely many t immediately below s in \hat{T} so that

$$
\left[\left(F_{t}-G_{s}\right) \cup G_{t}\right] \cap\left[\bigcup_{s \in T_{n}^{\prime}}\left(F_{s} \cup G_{s}\right)\right]=\varnothing
$$

The above is a double fusion argument.
Some more definitions from [L]:
(1) Fix a natural ω-ordering of $\omega^{<\omega}$ and for any $T \in \mathscr{F}$ transfer it to $\{t \in T$: stem $T \subseteq t\}$ in a canonical fashion. $T\langle n\rangle$ denotes the nth element of $\{t \in T:$ stem $T \subseteq t\}$.
(2) $\hat{T}^{n} \geqslant T$ iff $\hat{T} \succcurlyeq T$ and $\forall i \succcurlyeq n, \hat{T}\langle i\rangle=T\langle i\rangle$.
(3) The p.o. $\mathbf{P}_{\omega_{2}}$ is the ω_{2} iteration of \mathscr{F} with countable support $\left(p \Gamma_{\alpha}\right.$ $\Vdash " p(\alpha) \in \mathscr{F}^{M}\left[G_{a}\right]$ " for all α and $\operatorname{supp}(p)=\left\{\alpha: p(\alpha) \neq \omega^{<\omega}\right\}$ is countable $)$.
(4) For K finite and $n<\omega, p_{K}^{n} \geqslant q$ iff $\left[p \geqslant q\right.$ and $\forall \alpha \in K, p \Gamma_{\alpha} \mathbb{F}^{\prime} p(\alpha)$ $\left.{ }^{n} \geqslant q(\alpha){ }^{\prime}\right]$.

Lemma 2. Let f be a term denoting the first Laver real and τ any term. If $p \in \mathbf{P}_{\omega_{2}}$ and $p \Vdash$ " $\tau \in \omega^{\omega}, \forall n(f(n)<\tau(n))$ and τ increasing" then $\exists Z_{0}, Z_{1}$ such that $Z_{0} \cap Z_{1}$ is finite and $\exists p_{0}, p_{1} \geqslant p$ such that $p_{i} \Vdash$ " $\tau \omega \subseteq Z_{i}$ " for $i=0,1$.

Proof. Construct a sequence $p \leqslant_{K_{0}}^{0} p_{n} \leqslant K_{n}^{0} p_{n+1}$ so that $\cup_{n<\omega} K_{n}=$ $\cup_{n<\omega} \operatorname{supp}\left(p_{n}\right)$ and $0 \in K_{0}$. Having gotten p_{n}, let $s=\left(k_{0}, \ldots, k_{m}\right)$ be $p_{n}(0)\langle n\rangle$. Fix $t=\left(k_{0}, \ldots, k_{m}, k_{m+1}\right)$ in $p_{n}(0)$. Then for each $i \leqslant m+1$,

$$
p_{t}=\left\langle p_{n}(0)_{t} \cap p_{n} \upharpoonright\left[1, \omega_{2}\right)\right\rangle \mathbb{H} " \tau(i) \geqslant k_{m+1} \text { or } W_{l<k_{m+1}} \tau(i)=l " .
$$

Hence by applying Lemma 6 of [L] $m+2$ many times we can find $q_{t K_{n}}^{n} \geqslant p_{t}$ and $F_{t} \subseteq\left[k_{m}, k_{m+1}\right]$ such that $\left|F_{t}\right| \leqslant(m+2)(n+1)^{\left|K_{n}\right|}$ and $q_{t} \Vdash$ " τ " $\omega \cap$ $\left[k_{m}, k_{m+1}\right) \subseteq F_{t}$ ". (Note $p_{t} \mathbb{H}^{\prime} \forall i \geqslant m+1, \tau(i)>k_{m+1}$ "). Let $p_{n+1}(0)=$ $\left(p_{n}(0)-p_{n}(0)_{s}\right) \cup \cup\left\{q_{t}(0): t\right.$ is immediately below s in $\left.p_{n}(0)\right\}$. Let $p_{n+1}\left[1, \omega_{2}\right)$ be a term denoting $q_{t} \upharpoonright\left[1, \omega_{2}\right)$ if $q_{t}(0)$ or $p_{n} \upharpoonright\left[1, \omega_{2}\right)$ if $p_{n}(0)-\{t$: $s \subseteq t\}$. Hence $p_{n+1}{ }_{K_{n}}^{n} \geqslant p_{n}$. Now let \hat{p} be the fusion of the sequence of p_{n} (see [L, Lemma 5]). Then for each $t \in \hat{p}(0)$ if $t=\left\langle k_{0}, \ldots, k_{m}, k_{m+1}\right\rangle$ and $t \supseteq \operatorname{stem} \hat{p}(0)$, then $\left\langle\hat{p}(0)_{t} \cap \hat{p} \upharpoonright\left[1, \omega_{2}\right)\right\rangle \Vdash$ " τ " $\omega \cap\left[k_{n}, k_{n+1}\right) \subseteq F_{t}$ ". For $t \in \hat{p}(0)$ and $t \varsubsetneqq$ stem $\hat{p}(0)$ let $F_{t}=k_{m+1}$. Applying Lemma 1 obtain T_{0}, T_{1} $\geqslant \hat{p}(0), Z_{0}$ and Z_{1} such that $Z_{0} \cap Z_{1}$ is finite, and $\left\langle T_{i} \cap p \upharpoonright\left[1, \omega_{2}\right]\right\rangle$ If " τ " $\omega \subseteq Z_{i}$ " for $i=0,1$.

Proof of Theorem 5. Suppose $M\left[G_{\omega_{2}}\right] \Vdash$ " U is a semi- Q-point". Applying an argument of Kunen's we get $\alpha<\omega_{2}$ such that $U \cap M\left[G_{\alpha}\right] \in M\left[G_{\alpha}\right]$. ($M\left[G_{\beta}\right] \Vdash$ " CH " for all $\beta<\omega_{2}$ so construct using ω_{2}-c.c., $\alpha_{\lambda}<\omega_{2}$ for $\lambda<\omega_{1}$ so that $\forall x \in M\left[G_{\alpha_{\lambda}}\right] \cap 2^{\omega}, \mathbf{P}_{\alpha_{\lambda+1}}$ decides " $x \in U$ ". Let $\alpha=\sup \alpha_{\lambda}$. Note $M\left[G_{\alpha}\right] \cap 2^{\omega}=\cup_{\beta<\alpha} M\left[G_{\beta}\right] \cap 2^{\omega}$ since \aleph_{1} is not collapsed.) By [L, Lemma 11] we may assume $U \cap M \in M$. But Lemma 2 clearly implies that for any V ult. in $M, M\left[G_{\omega_{2}}\right]$ H "no extension of V is a semi- Q-point."

Remarks. (1) A similar argument shows that in the model gotten by ω_{2} iteration of Mathias forcing with countable support there are no semi- Q points. In fact, as Mathias later pointed out to me, the appropriate argument needed is an easy generalization of Theorem 6.9 of [M2].
(2) In [M1] Mathias shows $\left[\omega \rightarrow(\omega)^{\omega}\right] \Rightarrow$ [There are no rare filters or nonprincipal ultrafilters.]
(3) In neither the Laver or Mathias models are there small dominant families so by Ketenon [Ke] there is a P-point. Also it is easily shown no ultrafilter is generated by fewer then \boldsymbol{N}_{2} sets.
(4) Not long after the results of this paper were obtained, Shelah showed that it is consistent that no P-points exist [W]. In his model there is a dominant family of size κ_{1}, so there are Q-points. It remains open whether or not it is consistent that there are no P-points or Q-points.

Conjecture. Borel conjecture \Leftrightarrow there does not exist a semi- Q-point.

References

[C] G. Choquet, Deux classes remarquables d'ultrafiltres sur N, Bull. Sci. Math. 92 (1968), 143-153.
[Ke] J. Ketenon, On the existence of P-points in the Stone-Cech compactification of integers, Fund. Math. 62 (1976), 91.
[Ku1] K. Kunen, Some points in βN, Proc. Cambridge Philos. Soc. 80 (1976), 385-398.
[Ku2] \qquad Ppt's in random real extensions (to appear).
[L] R. Laver, On the consistency of Borel's conjecture, Acta Math. 137 (1976), 151-169.
[M1] A. R. D. Mathias, Remark on rare filters, Infinite and Finite Sets, Colloq. Math. Soc. Janos Bolyai, North-Holland, Amsterdam, 1975.
[M2] \qquad , Happy families, Ann. Math. Logic 12 (1977), 59-111.
[M3] \qquad , $0 \#$ and the P-point problem (to appear).
[R] J. Roitman, P-pts in iterated forcing extensions (to appear).
[W] E. Wimmers, The Shelah P-point independence theorem, Israel J. Math. (to appear).
Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706

