ON NOWHERE DENSE CLOSED P-SETS

KENNETH KUNEN, 1 JAN VAN MILL AND CHARLES F. MILLS

ABSTRACT. We show that no compact space of weight ω_1 can be covered by nowhere dense closed P-sets. In addition, we construct a compact space of weight ω_2 which can be covered by nowhere dense closed P-sets. As an application, we show that CH is equivalent to the statement that each small nonpseudocompact space has a remote point.

0. Definitions and notation. All spaces considered are completely regular.

As usual we identify a cardinal with an initial ordinal, and an ordinal with the set of smaller ordinals. Ordinals carry the order topology. A cardinal κ is regular if κ is not the sum of fewer, smaller cardinals.

Let κ be any uncountable cardinal. A subset B of a space X is called a P_{κ} -set provided that each intersection of fewer than κ neighborhoods of B is again a neighborhood of B. As usual, a P_{ω_1} -set is simply called a P-set. A space X is a P-space if each singleton is a P-set.

 βX denotes the Čech-Stone compactification of X and X^* is $\beta X - X$. A point x of X^* is called a *remote point* of X if $x \notin \operatorname{cl}_{\beta X} A$ for each nowhere dense subset A of X.

A π -base $\mathfrak B$ for a space X is a family of nonempty open subsets of X such that each nonempty open set in X contains some $B \in \mathfrak B$. The π -weight, $\pi(X)$, of X is the least cardinal κ for which there is a π -base for X of cardinality κ .

 $(X_{\alpha}, f_{\alpha\beta}, \kappa)$ means that κ is an ordinal, that for each $\alpha < \kappa$, X_{α} is a space and that, for each $\beta < \alpha$, $f_{\alpha\beta}$ is a map from X_{α} into X_{β} such that if $\beta < \alpha < \gamma$ then $f_{\gamma\beta} = f_{\alpha\beta} \circ f_{\gamma\alpha}$. The triple $(X_{\alpha}, f_{\alpha\beta}, \kappa)$ is called an *inverse system*. The inverse limit $\lim_{\kappa \to 0} (X_{\alpha}, f_{\alpha\beta}, \kappa)$ of the inverse system $(X_{\alpha}, f_{\alpha\beta}, \kappa)$ is the subspace

$$\left\{x \in \prod_{\alpha < \kappa} X_{\alpha} \middle| \forall_{\beta < \alpha < \kappa} x_{\beta} = f_{\alpha\beta}(x_{\alpha})\right\}$$

of $\prod_{\alpha<\kappa} X_{\alpha}$. The projection from $\lim_{\kappa} (X_{\alpha}, f_{\alpha\beta}, \kappa)$ into X_{α} is denoted by $f_{\kappa\alpha}$. An inverse system $(X_{\alpha}, f_{\alpha\beta}, \kappa)$ is called *continuous* provided that $X_{\beta} = \lim_{\kappa} (X_{\alpha}, f_{\alpha\gamma}, \beta)$ for each limit ordinal $\beta < \kappa$.

A space X is called *small* provided that $|C^*(X)| \leq 2^{\omega}$.

1. Introduction. It is well known that a pseudocompact P-space is finite [GH]; hence a compact infinite space cannot have too many singletons which are P-sets. This leaves open the question whether a compact infinite space

Presented to the Society February 5, 1979; received by the editors October 25, 1978 and, in revised form, January 16, 1979.

AMS (MOS) subject classifications (1970). Primary 54D35.

Key words and phrases. Nowhere dense, P-set, remote point, CH.

¹Partially supported by NSF Grant MCS76-06541.

can have "many" "small" P-sets. An appropriate topological translation of "smallness" is nowhere denseness, hence we are interested in nowhere dense closed P-sets. We were somewhat surprised to find the following partial answer to the above question.

1.1. THEOREM. Let X be a compact space of π -weight $\leq \kappa$ ($\kappa > \omega$). Then there is an $\kappa \in X$ such that $\kappa \notin K$ for all closed nowhere dense P_{κ} -sets $K \subset X$.

Notice that in case $\kappa = \omega_1$, this theorem states that no compact of π -weight ω_1 can be covered by nowhere dense closed *P*-sets.

This result suggests a host of questions: among others, whether every compact space of weight κ^+ contains a point which is not in any nowhere dense closed P_{κ} -set. We answer this question in the negative.

1.2. Example. For each uncountable κ there is a compact space X_{κ} of weight κ^+ such that each point of X_{κ} is contained in some nowhere dense closed P_{κ} -set of X_{κ} .

As an immediate consequence, CH is equivalent to the statement that no compact space of weight 2^{ω} can be covered by nowhere dense closed P-sets.

We find an application of our results in the construction of remote points.

- 1.3. THEOREM. CH is equivalent to the statement that each small nonpseudo-compact space has a remote point.
 - 2. Proof of Theorem 1.1. We start with a simple lemma.
 - 2.1. Lemma. If $X = \lim_{\alpha \to 0} (X_{\alpha}, f_{\alpha\beta}, \kappa)$, where
 - (a) κ is regular,
 - (b) $\pi(X_{\alpha}) < \kappa$ for each $\alpha < \kappa$,
 - (c) $(X_{\alpha}, f_{\alpha\beta}, \kappa)$ is continuous;

then for each closed subset A of X with empty interior there is some $\alpha < \kappa$ such that $f_{\kappa\alpha}[A]$ has empty interior.

PROOF. Since $(X_{\alpha}, f_{\alpha\beta}, \kappa)$ is continuous, for each limit ordinal $\alpha < \kappa$ the collection

$$\bigcup_{\beta < \alpha} \left\{ f_{\alpha\beta}^{-1} [U] \middle| U \text{ is open in } X_{\beta} \right\}$$

is a base for X_{α} . This implies that for each $\alpha < \kappa$ we may choose a π -base \mathfrak{B}_{α} for X_{α} such that:

- (i) $\alpha < \beta \Rightarrow f_{\beta\alpha}^{-1}[\mathfrak{B}_{\alpha}] \subset \mathfrak{B}_{\beta};$
- (ii) if $\beta < \kappa$ is a limit ordinal then $\mathfrak{B}_{\beta} = \bigcup_{\alpha < \beta} f_{\beta\alpha}^{-1}[\mathfrak{B}_{\alpha}];$
- (iii) if $\beta < \kappa$ then $|\mathfrak{B}_{\beta}| < \kappa$.

Write $\mathfrak{B}_{\alpha} = \{U_{\gamma}^{\alpha} | \gamma < \alpha'\}$ where $\alpha' < \kappa$. Fix α for awhile. For each $\gamma < \alpha'$ there is some $\gamma(\alpha) < \kappa$ such that $f_{\gamma(\alpha)\gamma}^{-1}[U_{\gamma}^{\alpha}] \not\subset f_{\kappa\gamma(\alpha)}[A]$. Write $\beta_0(\alpha) = \sup_{\gamma < \alpha'} \gamma(\alpha)$. Then $\beta_0(\alpha) < \kappa$ since κ is regular. In addition, define $\beta_{n+1}(\alpha) = \beta_0(\beta_n(\alpha))$ for each $n < \omega$.

Write $\beta = \beta_{\omega}(0) = \sup_{n < \omega} \beta_n(0)$. Then $\beta < \kappa$ since κ is regular. We claim that $f_{\kappa\beta}[A]$ has empty interior. For if $f_{\kappa\beta}[A]$ contains a member V of \mathfrak{B}_{β} , then

 $V = f_{\beta\beta_n(0)}^{-1}[U]$ for some $U \in \mathfrak{B}_{\beta_n(0)}$ and some $n < \omega$. But then $f_{\beta_{n+1}(0)\beta_n(0)}^{-1}[U]$ $\not\subset f_{\kappa\beta_{n+1}(0)}[A]$ whence $V \not\subset f_{\kappa\beta}[A]$, a contradiction. \square

2.2. Lemma. If X is a compact space of π -weight κ then there is an irreducible map $f: X \to Y$ where Y has weight κ .

PROOF. Assume $X \subset I^{\lambda}$, where I is the closed unit interval, and let $\{F_{\alpha}: \alpha < \kappa\}$ be a π -basis for X such that

$$F_{\alpha} = \bigcap_{i < n_{\alpha}} \pi_{\alpha_i}^{-1}(U_i^{\alpha}), \text{ where } U_i^{\alpha} \text{ is open in } I.$$

Let Y be the image of X under the projection onto the coordinates $\{\alpha_i : \alpha \in \kappa, i < n_{\alpha}\}$. One sees easily that this Y and this map satisfy our conclusion. \square

2.3. PROOF OF THEOREM 1.1. Assume first that κ is regular. Fix an irreducible map $f: X \to Y$ where $Y \subset I^{\kappa}$. Let $\pi_{\beta\alpha}: I^{\beta} \to I^{\alpha}$ be the projection $(\alpha < \beta \leq \kappa)$ and let $X_{\alpha} = \pi_{\kappa\alpha}[Y]$. Also, let $f_{\beta\alpha} = \pi_{\beta\alpha} \upharpoonright X_{\beta}$. Notice that $w(X_{\alpha}) < \kappa$ for each $\alpha < \kappa$. If $K \subset X$ is a closed P_{κ} -set and $\alpha < \kappa$ then

$$K \subset f^{-1} \circ f_{\kappa\alpha}^{-1} \circ f_{\kappa\alpha} \circ f[K],$$

and the latter is an intersection of less than κ open sets, since $w(X_n) < \kappa$. So

$$K \subset \operatorname{int}_X f^{-1} \circ f_{\kappa\alpha}^{-1} \circ f_{\kappa\alpha} \circ f[K].$$

Also, by Lemma 2.1, if $K \subset X$ has empty interior then $f_{\kappa\alpha} \circ f[K]$ has empty interior in X_{α} for some $\alpha < \kappa$ (since f is irreducible).

It is thus sufficient to choose $p \in X$ such that for each $\alpha < \kappa$ and each closed nowhere dense $H \subset X_{\alpha}$ we have that

$$p \notin \operatorname{int}_X f^{-1} \circ f_{\kappa\alpha}^{-1} [H].$$

If such a choice is impossible, then there are $\alpha_i < \kappa$ (i < n) and closed nowhere dense $H_i \subset X_{\alpha_i}$ such that

$$X = \bigcup_{i < n} \operatorname{int}_{X} f^{-1} \circ f_{\kappa \alpha_{i}}^{-1} [H_{i}].$$

Since a finite union of nowhere dense sets is nowhere dense, we may assume that $\alpha_0 < \alpha_1 < \cdots < \alpha_{n-1} < \kappa$. Now, inductively define open sets $U_i \subset X_{\alpha_i}$, so that $U_0 = X_{\alpha_0} - H_0$ and $U_{i+1} = f_{\alpha_{i+1}\alpha_i}^{-1}[U_i] - H_{i+1}$. Then $f^{-1} \circ f_{\kappa\alpha_{n-1}}^{-1}[U_{n-1}]$ is nonempty and misses each $f^{-1} \circ f_{\kappa\alpha_i}^{-1}[H_i]$, a contradiction.

Now observe that if κ is singular, then any P_{κ} -set of X is a P_{κ^+} -set; then the theorem for singular κ follows from the theorem for regular κ .

3. The example.

3.1. Construction of Example 1.2. Let

$$X_{\kappa} = \left\{ f \in (\kappa + 1)^{\kappa^{+}} | f \text{ is nondecreasing} \right\}$$
$$= \left\{ f \in (\kappa + 1)^{\kappa^{+}} | \forall_{\alpha < \beta < \kappa^{+}} f(\alpha) \leq f(\beta) \right\}.$$

It is trivial to verify that X_{κ} is compact and that $w(X_{\kappa}) = \kappa^+$. If $f \in X_{\kappa}$, either $f(\alpha) = \kappa$ for some $\alpha < \kappa^+$, in which case f is in the nowhere dense closed

 P_{κ} -set $\{g \in X_{\kappa} | g(\alpha) = \kappa\}$, or there is some $\xi < \kappa$ for which $f(\alpha) \le \xi$ for each $\alpha < \kappa^+$, in which case f is in the nowhere dense closed P_{κ^+} -set $\{g \in X_{\kappa} | g(\alpha) \le \xi \text{ for each } \alpha < \kappa^+\} = \bigcap_{\alpha < \kappa^+} \{g \in X_{\kappa} | g(\alpha) \le \xi\}$ (observe that this intersection is decreasing). \square

- 3.2. COROLLARY. CH is equivalent to the statement that no compact space of weight 2^{ω} can be covered by nowhere dense closed P-sets.
- 3.3. Question. Is there, in ZFC, an $x \in \beta\omega \omega$ such that $x \notin K$ for all closed nowhere dense P-sets K of $\beta\omega \omega$?
- 4. Remote points. Let us note that van Douwen [vD] has shown that each nonpseudocompact space of countable π -weight has a remote point. Not every nonpseudocompact space has a remote point [vDvM] and it is open whether or not every separable space has a remote point [vDvM] (the answer is yes under CH; this follows from a construction in [FG]).
- 4.1. PROOF OF THEOREM 1.3. Assume CH and let X be any nonpseudocompact small space. Let Z be a nonempty closed G_{δ} of βX which misses X [GJ, 6.1] and let $Y = \beta X Z$. Then Y is locally compact and σ -compact, $X \subset Y$ and $\beta Y = \beta X$ [GJ, 6.7]. It is clear that it suffices to show that Y has a remote point.

Since X is small, $w(\beta X) = w(\beta Y) \le 2^{\omega}$, hence $w(\beta Y - Y) \le 2^{\omega}$. By [vMM, 4.1], for each locally compact σ -compact space S and for each closed subspace $A \subset S$, it is true that $cl_{\beta S} A \cap S^*$ is a P-set of S^* . Hence, by [W, 2.11],

$$\left\{\operatorname{cl}_{\beta Y} D \ \cap \ Y^* | \ D \text{ is nowhere dense in } Y \right\}$$

consists of nowhere dense closed P-sets of Y^* . By Theorem 1.1 we may find a point which is in none of them; clearly, it is a remote point.

Now assume that every small nonpseudocompact space has a remote point. Let $X = X_{\omega_1}$ (cf. Example 1.2) and let $Z = X \times \omega$. Then

$$|C^*(Z)| \leq w(X)^{\omega} = \omega_2^{\omega} = \omega_2 \cdot 2^{\omega},$$

hence Z is small if CH fails. Since X can be covered by nowhere dense P-sets, $Z = X \times \omega$ has no remote points by [vDvM]. \square

4.2. Remark. With a similar proof the reader can easily verify the following fact: CH implies that, if X is small, each nonempty closed G_{δ} of βX which misses X contains $2^{2^{\infty}}$ remote points of X. In particular, whenever X is a small noncompact realcompact space, the set of remote points of X is dense in X^* .

BIBLIOGRAPHY

[vD] E. K. van Douwen, Remote points, Dissertationes Math. (to appear).

[vDvM] E. K. van Douwen and J. van Mill, Spaces without remote points (to appear).

[FG] N. J. Fine and L. Gillman, Remote points in βR , Proc. Amer. Math. Soc. 13 (1962), 29-36.

²Frankiewicz and Mills, *More on nowhere dense closed P-sets*, have recently shown that Con(ZFC + ω^* is covered by nowhere dense closed *P-sets*).

[GH] L. Gillman and M. Henriksen, Concerning rings of continuous functions, Trans. Amer. Math. Soc. 77 (1954), 340-362.

[GJ] L. Gillman and M. Jerison, Rings of continuous functions, The University Series in Higher Mathematics, Van Nostrand, Princeton, N. J., 1960.

[vMM] J. van Mill and C. F. Mills, A topological property enjoyed by near points but not by large points (to appear).

[W] R. G. Woods, Co-absolutes of remainders of Stone-Čech compactifications, Pacific J. Math. 37 (1971), 545-560.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706 (Current address of C. F. Mills)

SUBFACULTEIT WISKUNDE, VRIJE UNIVERSITEIT, DE BOELELAAN 1081, AMSTERDAM, THE NETHERLANDS

Current address (Kenneth Kunen): Department of Mathematics, University of Texas, Austin, Texas 78712

Current address (Jan van Mill): Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803