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COMPACTIFICATIONS WITH COUNTABLE REMAINDER

M. G. CHARALAMBOUS

Abstract. In this paper, we deal with the problem of characterizing those

spaces that have a compactification with countable remainder.

1. Introduction and definitions. A collection & of subsets of a topological

space X is called a network if every open subset of X is the union of a

subcollection of &. R(X) denotes the set of all points of X which possess no

compact neighbourhood. If y is a Hausdorff compactification of X, it is

readily seen that R(X) is the intersection of X with the closure of Y — X in

y. A Hausdorff compactification y of A" is said to have countable remainder if

y — A" is a countable set; by an abuse of terminology, we shall say that such

a y is a countable compactification of X. In what follows, the space X is

assumed to be at least Tychonoff. Two necessary conditions for X to have a

countable compactification are (a) X is Cech-complete and (b) X is rim-com-

pact. These are, in fact, sufficient conditions as well in the case when X is

metric separable [6], [10]. However, the product of the space of irrational

numbers with an uncountable discrete space, despite satisfying both (a) and

(b), possesses no countable compactification [4]. There has recently been

interest in finding conditions which, together with (a) and (b), ensure that X

has a countable compactification ([2], [3], [4], [8]). Terada has shown that one

such condition is that R(X) is compact metric, and Hoshina has weakened

this to the requirement that R(X) is metric separable. In this paper, we show

that (a) and (b), together with the condition that R(X) has a countable

network, ensure that X has a countable compactificaion. This includes

Hoshina's result as well as the case when R(X) is countable. In addition, our

proof is considerably shorter than the one given by Hoshina. Furthermore, we

construct examples to show that, in general, the topological properties of

R(X) do not determine whether X has a countable compactification.

2. A result.

Theorem. Let X be a Cech-complete, rim-compact space such that R(X) has

a countable network. Then X has a countable compactification.

Proof. Since X is rim-compact, X has at least one compactification Z with

ind(Z - X) < 0, where ind denotes small inductive dimension, and since A"
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is Cech-complete, Z - X = U "_i Fn, where for each n in N, the set of

positive integers, Fn is compact [5]. Let {An: n E N} be a. network for R(X).

For a fixed n in N, let M = {m E N: Äm n Fn = 0}. If x is a point of R(X),

by regularity of Z, there is an open set V of Z and some m in M with

xEv4mc Fc V c Z — Fn. For each m in M, by normality of Z, there is a

cozero set Gm of Z with 4 c Gm c Z - F„. Put

En = Z-   IJ    Gmu (*-*(*)).

It is readily seen that En is a compact subset of Z — X such that F„ c E„,

Z — X = U ™.i £„ and the complement of En in any compact subset of

Z - X= (Z - X) u A(A') is 0-compact. We may further assume that En c

En+X for each « in N. Now F„+1 - En is a locally compact, a-compact space

with ind(F„+1 - En) < 0. Hence Fn+1 - En is the union of a countable

collection of mutually disjoint compact sets. It follows that Z — X =

U "_ i 5n, where, for n, m in N with n ¥= m, B„, Bm are disjoint compact sets,

and (Z - X u Bn)u R(X) = U £_i C„m, where Cnm is compact for all

n, m in N.

Since Z - Z is Lindelöf and ind(Z - X) < 0, then dim(Z - X) < 0,

where dim denotes covering dimension. Hence, if E, F are disjoint closed sets

of Z, there exist disjoint open sets G, H with E c G, F c H and Z — X c

G \j H (see e.g. [1, Proposition 4]). It follows that there are pairs G,, Hi of

disjoint open sets of Z with (Z — X) c G, u #,, / E N, and such that

E c G, and F c #, for some / in N in each of the following cases. Firstly

when E = B„ and F = C„ m, secondly when E = An, F = Am and ^4n n v4m

= 0, and thirdly when E = An, F = Bm and An n Bm = 0, where «, /w are

in AT.

We now define an equivalence relation — on Z as follows. If x, v E Bn for

some n in /V, then x ~ v if and only if x and y belong to the same member of

{G,, //,-} for each / < n. Otherwise, x ~y if and only if x = v. Let w: Z —» y

be the quotient map induced by ~ . The equivalence class m~xit(x) of a point

x of Bn is the closed set Dx n ■ • • n D„ n 5„, where, for i < «, D,. is the

member of {G,, H¡) which contains x. Hence ir(Bn) consists of a finite

number of points. Clearly, Y is a Tx compactification of X with Y — X

countable. To complete the proof, it suffices to show that it is a closed map,

since this implies that Y is normal and therefore Hausdorff.

Let S be a closed set of Z. Then w~ltr(S) = S U T, where T = U„°L,r„

and F„ = 7T~ V(5 n Än) - S. Let x be a limit point of T. It suffices to show

that x E S u T, since this implies that ir~lit(S) is closed and hence w is

closed. Since T is a subset of the closed set (Z — X) u Ä(A'), either x E

Z?^) or, for some n in N, x E Bn. We note that, for m, k in TV, since tr(Bm) is

finite, then ir_17r(5 n 5m) is closed, so that if x is not in Um<k ir~itr(S n

Bm), then x is a limit point of U m>k Tm.

We first assume that x E R(X). Let K = {& £ N: x E Gk u #*}. For A: in
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K, write Dk for the element of {Gk, Hk] which contains x. Now x is a limit

point of Dm>kTm and hence there is an element xk of this set which is

contained in D (D¡: i G K, i < k). Let yk be an element of S with yk ~~ xk.

Then, for i < k,yk E H¡ implies xk E H¡. The infinite subset { y,, y2,. . . } of

the compact set S has a limit pointy in S. Suppose v =£ x. Either y E R(X)

or y E Bn for some « in A. In the first case, there are open neighbourhoods

U, V of x, y with U f) V = 0 and m, n in A with x G ^4m c i/ and y E An

C V. Clearly AmC\ An = 0 and hence there is r in A with Am c Gr and

^„ c //r. In the second case, let U be a neighbourhood of x with U D Bn =

0 and let m be in A with x E Am c U. Since /4M n fi, = 0, there is an r in

A with Am c G> and Bn c //,.. Now since v is a limit point of ( y„ y2, . . . },

for some k > r,yk E Hr, which implies that xk G //,, so that, since Gr n /L

= 0, xt S G, = Z)r. This contradicts the fact that xk is in fl (■£>,-: i G A',

/ < k) and shows that x = y and hence x G S.

Finally, suppose x E Bn for some « G A. It remains to show that x E

it~xit(S n B„). Suppose this is false. For / G N, let D¡ be the member of

(G,-, //,} which contains x. Then ir~xir(x) = Dxf\ . . . r\Dnf\ Bn and S n

Z>! n . . . n D„ n Bn = 0. The closure Q of (S - A") n Dx n . . . n D„ is a

compact subset of (Z - A") u R(X) which is disjoint from B„. For if y G /?„

n ß> tnen y E Bn D S, so that for some j < n, y & Dp and if P, is the

member of {Gp Hj) which contains y, then Pj r\ Q = 0. Thus (2 is a

compact subspace of U"_i Cnk. Hence there is a finite subset L of A such

that Bn c G, for each i E L and Q c (J (H¡: i G L). Let k = « + max L

and £> = Dx n . . . n Dk. Since x G Bn, for i G L, D¡ = G,. Let /m > k and

suppose y G D n Tm. Then there is z in S n Bm with y ~ z. For / < A:, y

and z belong to the same element of {G„ //,}. Hence z E D and it follows

that z E Q. Therefore for some / in L, z E H¡, which is absurd since

G¡ n //, = 0 and z E D c D¡ = G,. This shows that x is not a limit point of

U m>k Tm and since our assumption that x E B„ and x £ w~xir(S n Bn)

implies that x is not in U m<k tt^xit(S n Bm), then x is not a limit point of T.

This contradiction shows that x must be in w ~ '^(5 n Bn) and completes the

proof of the theorem.

3. Some examples. Example 1 shows that there are rim-compact, Cech-com-

plete spaces A, Xx, such that, despite R(X), R(XX) being homeomorphic, X

has a countable compactification but not A",. In this example, R(X) is

compact. In Example 2, the same pathology is exhibited with R(X) discrete.

Hoshina [4] has shown that if a paracompact space X has a countable

compactification, then R(X) is Lindelöf. Example 2 shows that, in general,

the fact that X has a countable compactification does not imply that R(X) is

Lindelöf.

We need the following result of Hoshina [4].

Lemma. If X has a countable compactification and % is a collection of

mutually disjoint open sets of X with U n R(X) # 0 for each U in %, then %

is countable.
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Example 1. Let R be the set of real numbers with the usual topology. Then

X = ßR — N, where ß denotes Stone-Cech compactification, has a countable

compactification and R(X) = ßN - N [8, Example 3].

Let N u {oo} be the one-point compactification of N, Y = (N u {oo}) X

(N u {oo}) X R(X) and Xx= Y - {oo} X N X R(X). Since Y is compact

and Y — Xx is a-compact and zero-dimensional, then Xx is Cech-complete

and rim-compact. In addition, R(XX) = {oo} X {oo} X R(X) is homeomor-

phic with R(X). Let <$L be an uncountable collection of mutually disjoint

nonempty open sets of ßN - N [9, p. 77]. For each U in %, let U* = (N u

{oo}) x(N u {oo}) x 17. Then [U* r\Xx: U E %} is an uncountable col-

lection of mutually disjoint open sets of Xx with U* n Xx n Ä(Jf"i) ̂ = 0 for

each U in %. The lemma implies that A", has no countable compactification.

Example 2. Let P be the set of irrational numbers and Q the set of rational

numbers. For each x in P, let {xx, x2, . . . } be a sequence of rationals

converging to x in the usual topology of R. A subset A of R is defined to be

open if whenever x E A C\ P, then there is n in .¿V with {x„, xn+1, . . . } c A.

With this topology, R is locally compact and Hausdorff, Q is dense in R and

P is a closed subspace of R with discrete topology [7, p. 87]. Let R u {oo } be

the one-point compactification of R, Y = (N u {oo}) X (R u {oo}) and

X = Y - {oo} X Q u {oo}. Then y is a countable compactification of X,

while R(X) = {oo} X P is not Lindelöf.

Let Z = (AT u {oo}) X y and Xx = (Z - {oo} X Y) u {oo} X {oo} X P.

Then Xx is Cech-complete and rim-compact, because Z — Xx is a-compact

and zero-dimensional, and R(XX) = {oo} X {oo} X Pis homeomorphic with

R(X). However, the lemma implies that the closed subspace N x (N \j {co})

X (P u {oo}) u R(XX) of Xx has no countable compactification, and hence

Xx has no countable compactification.

We can obviously choose X, Xx so that R(X), R(XX) are homeomorphic

with the one-point compactification of P.
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