BORNOLOGICAL SPACES OF NON-ARCHIMEDEAN VALUED FUNCTIONS WITH THE COMPACT-OPEN TOPOLOGY

W. GOVAERTS1

ABSTRACT. Let F be a field with nontrivial non-Archimedean valuation of rank one and let X be a zero-dimensional Hausdorff space. The vector space C(X, F) of all continuous functions from X into F is provided with the compact-open topology c. We prove that C(X, F, c) is bornological if and only if X is a \mathbb{Z} -replete space.

Introduction. In this paper we prove the conjecture in Remark (3) of [2]. In [2] the reader may find some comments on ultraregular (zero-dimensional) spaces and **Z**-replete spaces. Let $\beta_0 X$ be the Banaschewski compactification of X, i.e. the essentially (up to homeomorphism) unique compact ultraregular space that contains X as a dense subspace and is such that disjoint clopen sets in X have disjoint closures in $\beta_0 X$. As in [1] $v_0 X$ is the set of all $x \in \beta_0 X$ such that for each sequence $(V_n)_{n=1}^{\infty}$ of neighborhoods of x in $\beta_0 X$, $\bigcap_{n=1}^{\infty} V_n \cap X \neq \emptyset$. From Theorem 9 in [1] we know that $v_0 X = v_2 X$.

The aim of this paper is to prove

THEOREM 1. C(X, F, c) is an F-bornological space if and only if X is **Z**-replete.

The relatively easy "only if" part was obtained in [2, Remark 2]. So from now on we assume that X is a fixed ultraregular space with $v_0X = v_{\mathbb{Z}}X = X$ and we consider an absolutely convex subset S of C(X, F) that absorbs all c-bounded sets. We want to show that S is a c-neighborhood; without loss of generality we assume $\emptyset \neq S \neq C(X, F)$.

DEFINITION 1. If $f \in C(X, F)$, then $B(f) = \{ g \in C(X, F) : |g(x)| \le |f(x)| \text{ for all } x \in X \}$.

Clearly, B(f) is an absolutely convex c-bounded set.

DEFINITION 2. $\mathscr{C} = \{A \subset X : A \text{ is clopen and there is a } \lambda \in F \setminus \{0\} \text{ with } B(\chi_A) \subseteq \lambda S \}.$

Here χ_A denotes the characteristic function of A; we have $\emptyset \notin \mathcal{C}$.

LEMMA 1 (slightly more general than [2, Lemma 1]). If $A \notin \mathcal{C}$ and $f \in C(X, F)$ with f(x) = 0 for all $x \in X \setminus A$, then $B(f) \subseteq \lambda S$ for all $\lambda \in F \setminus \{0\}$.

Received by the editors September 25, 1978 and, in revised form, March 22, 1979. AMS (MOS) subject classifications (1970). Primary 54D35, 46E10.

Key words and phrases. Non-Archimedean valued field, ultraregular space, bornological space, compact-open topology, Z-replete space.

^{1&}quot;Aspirant" of the Belgian "Nationaal Fonds voor Wetenschappelijk Onderzoek".

PROOF. Let $\lambda \in F \setminus \{0\}$ be given. As $B(f^2)$ is bounded, there is a $\lambda_0 \in F$ such that $|\lambda_0| \ge 1$ and $B(f^2) \subseteq \lambda_0 \lambda S$. Let $W = \{x \in X : |f(x)| \le |\lambda_0|\}$, a clopen set. Then $f = f \cdot \chi_W + f \cdot \chi_{A \setminus W} = f \cdot \chi_{A \cap W} + f \chi_{X \setminus W}$.

As $|f\chi_{A\cap W}| \leq |\lambda_0|\chi_A$ and $A \notin \mathcal{C}$, $B(f\chi_{A\cap W}) \subseteq \lambda_0 B(\chi_A) \subseteq \lambda_0 \lambda_0^{-1} \lambda S = \lambda S$. Hence as $|f\chi_{X\setminus W}| \leq |\lambda_0^{-1} f^2|$, $B(f) \subseteq B(f\chi_{A\cap W}) + B(f\chi_{X\setminus W}) \subseteq \lambda S + \lambda_0^{-1} \lambda_0 S \subseteq \lambda S$.

LEMMA 2. If $A \in \mathcal{C}$, $A = \bigcup_{i=1}^{\infty} A_i$ with all A_i clopen, then there is an i with $A_i \in \mathcal{C}$.

Proof. Cf. [2, Lemma 2].

LEMMA 3. If $(A_i)_{i=1}^{\infty}$ is a family of disjoint clopen sets, and if $\bigcup_{i=1}^{\infty} A_i$ is clopen, then at most a finite number of A_i are in \mathfrak{C} .

PROOF. Cf. [2, Lemma 3]. Remark, however, that our case requires $\bigcup_{i=1}^{\infty} A_i$ to be a clopen set.

PROOF OF THE "IF" PART OF THEOREM 1. Let \Re be the family of all clopen subsets V of X such that $X \setminus V \notin \mathcal{C}$. Then $\Re \subseteq \mathcal{C}$ by Lemma 2. By Lemma 1, $X \in \Re$ and $\varphi \notin \Re$. Clearly, any clopen subset of X containing a member of \Re belongs to \Re . Finally, if $V, W \in \Re$, then $V \cap W \in \Re$, for as $X \setminus (V \cap W) = (X \setminus V) \cup (X \setminus W), X \setminus (V \cap W) \notin \mathcal{C}$ by Lemma 2.

Thus $\mathcal K$ is a filter base of clopen sets. Let K be the adherence of $\mathcal K$ in $\beta_0 X$. Thus K is a nonempty, compact subset of $\beta_0 X$. We shall show that $K \subseteq \nu_0 X = X$. Assume, on the contrary, that $a \in K \setminus \nu_0 X$. Then there is a decreasing sequence $(V_n)_{n \geq 0}$ of clopen neighborhoods of a in $\beta_0 X$ such that $V_0 = \beta_0 X$ and $(\bigcap_{n=0}^{\infty} V_n) \cap X = \emptyset$. Hence $X = \bigcup_{n=1}^{\infty} ((V_n \setminus V_{n+1}) \cap X)$.

By Lemma 3, there exists $m \ge 0$ such that $(V_n \setminus V_{n+1}) \cap X \notin \mathcal{C}$ for all $n \ge m$. Consequently, as

$$V_m \cap X = \bigcup_{n=m}^{\infty} ((V_n \setminus V_{n+1}) \cap X), \qquad V_m \cap X \notin \mathcal{C},$$

by Lemma 2, whence $X \setminus V_m \in \mathcal{K}$. Thus $a \in \overline{X \setminus V_m} \cap \overline{X \cap V_m}$ (closures in $\beta_0 X$). However, $X \setminus V_m$ and $X \cap V_m$ are disjoint clopen sets in X so that their closures in $\beta_0 X$ are disjoint. This contradiction establishes that $K \subseteq v_0 X = X$.

Now clearly $K = \bigcap \mathcal{K}$. As $B(\chi_X)$ is bounded, there is a $\lambda \neq 0$ such that $B(\chi_X) \subseteq \lambda S$. As K is compact, we need only show that if $|f(x)| \leq |\lambda|^{-1}$ for all $x \in K$, then $f \in S$. Let $W = \{x \in X : |f(x)| \leq |\lambda|^{-1}\}$, a clopen subset of X. The closure \overline{W} of W in $\beta_0 X$ is a neighborhood of K. Since $(\bigcap \mathcal{K}) \cap (\beta_0 X \setminus \overline{W}) = \emptyset$ and $\beta_0 X \setminus \overline{W}$ is compact, there is a $V \in \mathcal{K}$ with $V \subset \overline{W}$. Hence $V \subseteq W$ and $X \setminus W \notin \mathcal{C}$. By Lemma 1 applied to $X \setminus W$, $B(f \cdot \chi_{X \setminus W}) \subseteq S$, and $B(f \cdot \chi_W) \subseteq B(\lambda^{-1} \chi_X) \subseteq S$, so

$$B(f) \subseteq B(f \cdot \chi_{X \setminus W}) + B(f \cdot \chi_{W}) \subseteq S + S \subseteq S.$$

In particular, $f \in S$.

Final Remarks. This paper was greatly improved and simplified thanks to the comments of Professor S. Warner. He also remarked that the principal result of [2] can be established in this way. Indeed, suppose that, in addition to the assumptions made on S in this paper, S absorbs all pointwisely bounded sets. It suffices to prove that K is finite. By Lemma 4 of [2], $X = A_1 \cup A_2 \cup \cdots \cup A_n$ where each $A_i \in \mathcal{C}$ and A_i is not the disjoint union of two members of \mathcal{C} . We shall prove that $K \cap A_i$ has at most one point. Suppose $a, b \in K \cap A_i$, $a \neq b$. Let V be clopen such that $a \in V$, $b \in X \setminus V$. Either $A_i \cap V \notin \mathcal{C}$ or $A_i \setminus V \notin \mathcal{C}$. We may assume $A_i \cap V \notin \mathcal{C}$. Then $X \setminus (A_i \cap V) \in \mathcal{K}$ so that $a \in K \subseteq X \setminus (A_i \cap V)$, which is a contradiction.

REFERENCES

- 1. G. Bachman, E. Beckenstein, L. Narici and S. Warner, Rings of continuous functions with values in a topological field, Trans. Amer. Math. Soc. 204 (1975), 91-112.
- 2. W. Govaerts, Bornological spaces of non-Archimedean valued functions with the point-open topology, Proc. Amer. Math. Soc. 72 (1978), 571-575.
 - 3. S. Mrówka, Further results on E-compact spaces. I, Acta Math. 120 (1968), 161-185.

RUKSUNIVERSITEIT GENT, SEMINARIE VOOR HOGERE ANALYSE, GALGLAAN 2, B-9000 GENT, BELGIUM