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SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and

polished character, for which there is no other outlet.

A PROOF OF THE PRINCIPLE OF LOCAL REFLEXTVITY

CHARLES STEGALL

Abstract. A quite elementary proof of the principle of local reflexivity is

given.

Our purpose here is to give a proof of the "principle of local reflexivity"

(using only the various forms of the Hahn-Banach theorem) as given in [1]

and in an improved version in [2]. Our notation is standard. By X, Y and Z

we shall denote Banach spaces and Jx will denote the canonical embedding

of X into its second dual X". An operator is a continuous linear function.

We shall require only the three following lemmas.

Lemma 1. Let T: X —* Y be a closed operator. If x" is in X" and y is in Y

such that T"x" = JYy then, for any 3 > 0 there exists an x in X such that

\\x\\ < (1 + 9)||xl

and Tx = y.

Lemma 2. Let T: X -» Y and S: X -» Z be operators such that T is closed

and S has finite rank. Then U: X —» Y X Z defined by Ux = (Tx, Sx) is a

closed operator.

Lemma 3. Let 0 < 3 < \ and T: X -»■ Y be an operator such that X is finite

dimensional and

(l + 3)-'< 117X11 < (1 + 3)

where {x¡} is any 3-net for the unit sphere of X. Then T is invertible and

mir-KÍT^Xm-^r-w
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Lemma 1 follows immediately from the separation theorem. Lemma 2 is

easily proved by observing that U' is closed and Lemma 3 is a routine

computation using the triangle inequality.

Theorem [1], [2]. Let E and F be finite dimensional subspaces of X" and X',

respectively, and ¡et e > 0. Then there exist an operator T: E -* X such that

\\T\\ \\T~X\\ < 1 + e, x'(Tx") = x"{x')for all x" in E and all x' in F, and

Tx" = x if Jxx = x" is in E.

Proof. Choose 9 > 0 so that #(3) < 1 + e where # is as in Lemma 3.

Choose norm one elements a\, a'2, . . ., a'm in X' containing a basis of F and

such that

||*"||<(l + 8)sup|*"(a;)|
j

for all x" in E. Choose b'{, b2, . . ., b% a 9-net for the unit sphere of E such

that b'[, ..., ¿£ is a basis for JXX n E and b'[, . . . , b", r > k, is a basis for

E. Then, for 1 < p < q = n - r, we have the unique scalars {tpJ}, 1 < /' < r,

such that

*;+,- 2 tp4b?.
1 </<r

Define for 1 < p < q

sP,i - -1,

o,

i < r,

i - r+p,

r < i < n and i ¥= r + p.

Define A0: X" -* Xk+« by

A0{xx, ...,x„) = ixv . . . , xk; |   2    sp,ixij)

for 1 < p < q where X" and Xk+q are the usual product spaces with the sup

norm. The operator A0 is onto since the matrix (sp,) has rank q. Define A :

X"^>Z = Xk+q X r by

A(xu ...,x„) = (A0(Xl, ..., xn); {aj{x¡)))

for 1 < j < m and 1 < i < n. By Lemma 2, ^4 is a closed operator. Observe

that A"(b'{, . . ., ¿>¿') is in JZZ. Therefore, by Lemma 1, there exists

{bv...,bJmXm,

sup||6,||<(l + a)sup||6/'|| = l + 8,
/ i

such that JzA{bx, . . . , b„) = A "(b'{, . . ., b'¿). Define the operator T: E -+ X

such that Tb" = b¡ for 1 < / < r. For 1 < p < ?, we have that 1x<i<k„spib"

= 0 and '£\<j<nsPtibi = 0 which gives that Tb" = b¡ also for r < i < n. To

apply Lemma 3 and complete the proof we need only observe that for each /',

H7VII > supKW)! = sup|è/'(a;)| > (1 + 3)-\
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This proof was presented at the Functional Analysis Conference at Ob-

erwolfach in October, 1974.
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