SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

A PROOF OF THE PRINCIPLE OF LOCAL REFLEXIVITY

CHARLES STEGALL

ABSTRACT. A quite elementary proof of the principle of local reflexivity is given.

Our purpose here is to give a proof of the "principle of local reflexivity" (using only the various forms of the Hahn-Banach theorem) as given in [1] and in an improved version in [2]. Our notation is standard. By X, Y and Z we shall denote Banach spaces and J_X will denote the canonical embedding of X into its second dual X''. An operator is a continuous linear function.

We shall require only the three following lemmas.

LEMMA 1. Let $T: X \to Y$ be a closed operator. If x'' is in X'' and y is in Y such that $T''x'' = J_{Y}y$ then, for any $\partial > 0$ there exists an x in X such that

$$||x|| < (1+\vartheta)||x''||$$

and Tx = y.

LEMMA 2. Let $T: X \to Y$ and $S: X \to Z$ be operators such that T is closed and S has finite rank. Then $U: X \to Y \times Z$ defined by Ux = (Tx, Sx) is a closed operator.

LEMMA 3. Let $0 < \partial < \frac{1}{4}$ and $T: X \to Y$ be an operator such that X is finite dimensional and

$$(1+\vartheta)^{-1} \leq ||Tx_i|| \leq (1+\vartheta)$$

where $\{x_i\}$ is any ∂ -net for the unit sphere of X. Then T is invertible and

$$\|T\|\,\|T^{-1}\| \leq \left(\frac{1+\vartheta}{1-\vartheta}\right)\left(\frac{1}{1+\vartheta}-\frac{\vartheta(1+\vartheta)}{1-\vartheta}\right)^{-1} = \vartheta(\vartheta).$$

Received by the editors July 21, 1978.

AMS (MOS) subject classifications (1970). Primary 46B99.

Key words and phrases. Banach spaces.

Lemma 1 follows immediately from the separation theorem. Lemma 2 is easily proved by observing that U' is closed and Lemma 3 is a routine computation using the triangle inequality.

THEOREM [1], [2]. Let E and F be finite dimensional subspaces of X" and X', respectively, and let $\varepsilon > 0$. Then there exist an operator T: $E \to X$ such that $||T|| ||T^{-1}|| < 1 + \varepsilon$, x'(Tx'') = x''(x') for all x" in E and all x' in F, and Tx'' = x if $J_X x = x''$ is in E.

PROOF. Choose $\partial > 0$ so that $\vartheta(\partial) < 1 + \varepsilon$ where ϑ is as in Lemma 3. Choose norm one elements a'_1, a'_2, \ldots, a'_m in X' containing a basis of F and such that

$$||x''|| < (1+\partial) \sup_{j} |x''(a'_j)|$$

for all x'' in E. Choose b_1'' , b_2'' , ..., b_n'' a θ -net for the unit sphere of E such that b_1'' , ..., b_k'' is a basis for $J_XX \cap E$ and b_1'' , ..., b_r'' , r > k, is a basis for E. Then, for $1 , we have the unique scalars <math>\{t_{p,i}\}$, 1 < i < r, such that

$$b_{r+p}'' = \sum_{1 \le i \le r} t_{p,i} b_i''.$$

Define for $1 \le p \le q$

$$s_{p,i} = \begin{cases} t_{p,i}, & i \leq r, \\ -1, & i = r+p, \\ 0, & r < i \leq n \text{ and } i \neq r+p. \end{cases}$$

Define $A_0: X^n \to X^{k+q}$ by

$$A_0(x_1,\ldots,x_n) = \left(x_1,\ldots,x_k; \left(\sum_{1 \leq i \leq n} s_{p,i} x_i\right)\right)$$

for $1 \le p \le q$ where X^n and X^{k+q} are the usual product spaces with the sup norm. The operator A_0 is onto since the matrix $(s_{p,i})$ has rank q. Define A: $X^n \to Z = X^{k+q} \times \mathbb{C}^{nm}$ by

$$A(x_1, \ldots, x_n) = (A_0(x_1, \ldots, x_n); (a'_i(x_i)))$$

for $1 \le j \le m$ and $1 \le i \le n$. By Lemma 2, A is a closed operator. Observe that $A''(b_1'', \ldots, b_n'')$ is in $J_Z Z$. Therefore, by Lemma 1, there exists (b_1, \ldots, b_n) in X^n ,

$$\sup_{i} ||b_{i}|| < (1 + \partial) \sup_{i} ||b_{i}''|| = 1 + \partial,$$

such that $J_Z A(b_1, \ldots, b_n) = A''(b_1'', \ldots, b_n'')$. Define the operator $T: E \to X$ such that $Tb_i'' = b_i$ for $1 \le i \le r$. For $1 \le p \le q$, we have that $\sum_{1 \le i \le n} s_{p,i} b_i'' = 0$ and $\sum_{1 \le i \le n} s_{p,i} b_i = 0$ which gives that $Tb_i'' = b_i$ also for $r < i \le n$. To apply Lemma 3 and complete the proof we need only observe that for each i,

$$||Tb_i''|| > \sup_j |a_j'(Tb_i'')| = \sup_j |b_i''(a_j')| > (1+\delta)^{-1}.$$

This proof was presented at the Functional Analysis Conference at Oberwolfach in October, 1974.

REFERENCES

- 1. J. Lindenstrauss and H. Rosenthal, The \mathbb{C}_p spaces, Israel J. Math. 7 (1969), 325–349.
- 2. W. B. Johnson, H. Rosenthal and M. Zippin, On bases, finite dimensional decompositions and weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488-506.

MATHEMATISCHES INSTITUT, UNIVERSITÄT ERLANGEN-NÜRNBERG, 8520 ERLANGEN, GERMANY

Current address: Institut für Mathematik, Johannes Kepler Universität, A-4045 Linz, Austria