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THE CLOSED SOCLE OF AN AZUMAYA ALGEBRA

F. R. DbMEYER

Abstract. If R is a Noetherian ring and A is an Azumaya algebra over R then an

ideal H(A) in R, called the closed socle of A, is defined and it is shown that H{A)

is independent of the representative A in the Brauer group of R. When R is a

domain, the behavior of H(A) under localization and passage to the quotient field

is studied, and H(A) is calculated when R is the affine ring of a real curve.

Let R denote a Noetherian, integrally closed domain and A an Azumaya (central

separable) algebra over R. In [6], D. Haile associated to A an ideal in R which he

called the closed socle of A and which we denote H(A). In this note we show how

to define the closed socle of an Azumaya algebra over any commutative

Noetherian ring, give simplified proofs of results slightly more general than those in

[6], and calculate the closed socle of an Azumaya algebra over the affine ring of a

real curve. More specifically, if R is a commutative Noetherian ring and A is an

Azumaya algebra over R then H(A) is defined and is independent of the choice of

representative A in its class in the Brauer group B(R) of R. If R is a local

Noetherian domain with quotient field F and maximal ideal m and 2 = A ® F,

then Index (2) > lndex(A/mA) when H{A) = R. Thus, if 2 = Mn{F) then H(A)

= R if and only if A = Mn(R). Also, if A/mA is a division algebra then A is a

maximal order in a division algebra over F when H(A) = R. A localization result is

proved and consequences of these results for Noetherian domains are derived. If R

is the affine ring of a real curve X and A is an Azumaya algebra over R then

H(A) QYIPX where Px is the prime ideal in R corresponding to a point x G X and

x runs over the singular points x G X which are isolated in the strong topology and

for which A/PXA is not in the trivial class of B(R/PX). Throughout all unex-

plained terminology and notation is as in [4], and ® always means <8)R.

1. We begin by extending the definition of the closed socle given in [6]. Let R be

a domain with quotient field F, let A be an Azumaya algebra over R, and let

1, = A®F=A-F. A left ideal L in A is pure over R in case raGi for

O^reii and a G A implies a G L ([2, p. 199]). It is easy to show that there is a

one-to-one order preserving correspondence between the .R-pure left ideals Lin A

and the left ideals L1 in 2 by L -> L ■ F and L1 -» L1 n A. It follows that minimal

pure left ideals exist in A. Let / be the sum of the minimal J?-pure left ideals in A,

then the closed socle of A is defined to be / n R and is denoted H(A). Observe

that the set / in A is actually a two-sided ideal in A. It is clear that / is a left ideal

in A, and for a G A  and minimal pure left ideal L of A  either La — 0 or
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{Là)F = (LF)a is a minimal left ideal of 2, since La C (LF)a n A and

(LF)a n A is a two-sided ideal in A. By the one-to-one correspondence between

two-sided ideals of A and R ([4, 3.7, p. 54]) it follows that / = A ■ H(A). This

corresponds to the construction of the closed socle for normal domains given in [6].

Now assume R is a reduced Noetherian ring. Then (0) = C\ "_i-P,, where the P¡ are

a uniquely determined set of prime ideals so that the intersection is irredundant. If

A is an Azumaya algebra over R let A¡ = R/P¡ <8> A, then A¡ is an Azumaya

algebra over the domain R/P¡. From the above H(A¡) is an ideal in R/P¡ whose

natural inverse image is an ideal 7, in R. We define the closed socle H {A) of A to

be D ?_ 11¡. If R is just a commutative Noetherian ring let N be the nil radical of R,

and let A be an Azumaya algebra over R. Above we defined H(A/NA) in R/N.

We define the closed socle H (A) of A to be the natural inverse image of H(A/NA)

in R. The calculation of the closed socle of an Azumaya algebra over the affine

ring of a real curve given later illustrates the naturalness of this definition.

Lemma 1. Let R be a domain and P a prime ideal in R. Let A be an Azumaya

algebra over R, then H(RP <8> A) = RP <8> H(A) where RP denotes the localization of

R at P.

Proof. One can check that there is a one-to-one correspondence between the

minimal pure left ideals L of A and the minimal pure left ideals L1 of Rp <8> A =

ARP by L -» LRP and L1 —> A n L1. Let / be the sum of the minimal pure left

ideals of A and I1 the sum of the minimal pure left ideals in A1. Then I • Rp =

1LRP where L runs through the minimal pure left ideals in A. Thus IRP = /'.

Now one can check that H(A)RP = H(RP ® A).

We note here that if S is a commutative Ä-algebra and A is an Azumaya

Ä-algebra it may not be the case that H(S ® A) = S <8> H(A). For example let R

denote the field of real numbers, let R = R[x, v]/(x2 + y2) and let S be the

integral closure of R. We later show that if A is the Azumaya algebra generated by

elements i,j subject to i2 = j2 = -1 and ij = -ji and P is the maximal ideal in R

generated by {x,y} then H(A) Q P; but H{S ® A) = S so 5 ® H(A) =£

H(S ®A).

Lemma 2. Let A and A ' be two Azumaya algebras in the same class of the Brauer

group of the Noetherian ring R, then H(A) = H(Al).

Proof. Assume R is a local domain. Then there is an Azumaya Ä-algebra D

with no idempotents other than 0 and 1 and positive integers n and k with

A s Mn(D),Al = Mk(D) by Corollary 1 of [3]. In this case it suffices to show

H(D) = H(Mn(D)). Let F be the quotient field of R and 2 = F <g> D = F- D.

Then F <8> Mn(D) = Mn(Z). Let e^ be the matrix in M„(S.) with a 1 in the ij entry

and 0 elsewhere. Let L be a minimal pure left ideal in D so L1 = 2L is a minimal

left ideal in 2. Then M„(L) = 0 J.,M„(L)e„ and A/„(2) • M„(L) = M„(2 • L) =

© ï-iMnÇ2.L)eu. Moreover, since L is R-pme in 2, Mn(L)e¡¡ is i?-pure in M„(2) so

Afn(2L)e,7 n M„(Z>) = Mn(L)eu. Finally, M„(2L)e,., is a minimal left ideal in

Af„(2) since 2 • L is a minimal left ideal in 2. Thus
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Mn(L) = M„(2L) n M„(D) = ( ©  M„(2L)e„) n M„(D)

2 ©  M„(2L)e„. n M„(Z>) = ©  Mn(L)eH = A/„(L).
1=1 <=i

Thus Mn(L) is contained in the sum of the minimal pure left ideals in M„(D) so

H(D) G H{Mn{D)). For the reverse inclusion let / be the sum of the minimal pure

left ideals L of D. Let J' be the sum of minimal pure left ideals in Mn(D). By 3.5,

p. 22 in [4] we know /' = M„(J) for some two-sided ideal J in D. We have already

shown I G J. Let (x¡f) be an n X n matrix in Mn(D) with (x¡f) £ Mn(I) yet

(xtJ) G L1 for some minimal pure left ideal L1 of Mn(D). If x^ £ 7 then

(ea)(xij)(ejj) is contained in Mn(D) and in the minimal left ideal LleM. Thus if ATy is

the matrix whose yth entry is xtJ and all others are 0 then Xy G L'ev n Mn(D) is

in a minimal pure left ideal in Mn(D), so A/„(2)A^ is a minimal left ideal in A/„(2).

Thus 2jciy must be a minimal left ideal in 2. Thus xtj G 2x/y Ç\ D G I which

contradicts the choice of x,,.

Now let R be any commutative Noetherian ring with nil radical N. If A is

equivalent to A1 in 5(A) then yl//VVl is equivalent to Al/Nl in B(R/N) so it

suffices to show H(A/N(A)) = H(AX / NAX). Similarly, we can assume R is a

domain for if we write (0) as the irredundant intersection of a unique set {P^l^i of

prime ideals and if H(A/P¡A) = H(A l/P¡A ') for all i then H(A) = H(A '). If R is

a Noetherian domain and P is any prime ideal in R we know Rp ® .//(/I) = Äp ®

//(/I ') by the first part of the proof since RP ® A is equivalent to RP ® /I ' in

5(7^). Thus if H(A) = n ?.1ßi'* and tf^1) = n ?.,ß,"* where {&} is an irre-

dundant collection of prime ideals and m¡, n¡ > 0 then m¡ = n¡ for all /' so we

always have H(A) = H(A ').

If A is an Azumaya algebra over a field F then the index of A is the square root

of the dimension of the division algebra part of A over F. The next result is a

generalization (with an easier proof) of Theorem 4.6 of [6].

Theorem 1. Let R be a local Noetherian domain with maximal ideal m and

quotient field F. Let A be an Azumaya algebra over R and 2 = F ® A. If

H(A) = R then Index 2 > Index A/mA. Moreover, if Index 2 = Index A/mA

then A = Mn(B) where B is an Azumaya R-algebra such that F ® B is a division

algebra.

Proof. Assume H(A) = R. Then there is a minimal pure left ideal L of A with

L £ mA. Let A0 = 31 La where the sum runs over those a G A such that La 2 mA.

Then A0 is an /?-submodule of A and (A0 + mA)/mA is a two-sided ideal in

A/mA. Since A/mA is simple, (A0 + mA)/mA = A/mA, so by Nakayama's

lemma, A0 = A. Therefore A = 2La where the sum is taken over finitely many

a G A such that La £ mA. Let La= F- La. Then 2 =Lax © • • • ®Lan. Thus

A D Lax © • •• ®Lan = A1 and each La¡ £ mA¡ and Ax is an i?-submodule of A.

Note that {Ax + mA)/mA = (Lax + mA)/mA © • • • ©(La„ + mA)/mA and

each summand on the right is a nonzero ideal in A/mA. This proves Index 2 >

Index A/mA. If Index 2 = Index A/mA  then (Ax + mA)/mA = A/mA  so by
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Nakayama's lemma A1 = A. Let B° = Horn^La,, La{). Then B is an Azumaya

algebra over R and A = Hom^La,, Lax) = Mn(B), with B a maximal order in the

division algebra component of 2.

Corollary 1. Let R be a local Noetherian domain with quotient field F, and let A

be an Azumaya R-algebra. If F ® A s Mn(F) then A ss Mn(R) if and only if

H(A) = R.

Proof. If A » Mn(R) then it is easy to see that H(A) = R (this also follows from

Lemma 2). Conversely, Index F ® A = 1 > Index A/mA so the inequality is an

equality and the result follows from Theorem 1.

Corollary 2. Let R be a Noetherian domain with field of quotients F. Suppose A

is an Azumaya R-algebra with F ® A = Mn(F). Let P be a prime ideal in R, then

RP® A » Mn(RP) if and only if H(A) 2 P.

Proof. Combine Lemma 1 and Corollary 1.

Corollary 3. Let R and A be as in Theorem 1. If A/mA is a division algebra and

H (A) = R then F ® A is a division algebra.

Proof. By Theorem 1, Index F ® A > Index A/mA since [Index A/mA]2 =

RankR/m(A/mA) = RankÄ(^) = Rankf(F ® A) > [Index F ® A]2. Thus

[Index F ® A]2 = RnnkF(A) and F ® A is a division algebra.

Theorem 2. Let R be the affine ring of a real curve X. For each closed point

x El X let Px be the corresponding maximal ideal in R. Let A be an Azumaya

R-algebra. Then the longest product of ideals Px containing H(A) has factors Px

satisfying all of the following.

1. x is a real singular point on X.

2. x is isolated in the strong topology on the real points of the irreducible component

X¡ of X containing x.

3. A/PXA does not represent the trivial class in B(R/PX).

Proof. For each x e X let R(x) = R/Px and A(x) = A/PXA. Since X is a real

curve R(x) is either the real or complex numbers. If R(x) is the real number R then

either A(x) is a matrix algebra over R or A{x) is a matrix algebra over the division

algebra of real quaternions. In [5] the Azumaya algebras A over R are char-

acterized as continuously parameterized systems of Azumaya algebras A(x) over

the real points x G X with the strong topology. If X is irreducible then R is a

domain and the quotient field F of R is the field of rational functions on X. By

Remark 3.4 of [5] the real points x for which A(x) is a matrix algebra over the

quaternions, yet F ®Ä(x) A(x) is a matrix algebra over F, are precisely the real

singular points x £ X which are isolated in the strong topology and for which A(x)

is a matrix algebra over the quaternions. Combining Theorem 1 and Lemma 1 we

see that A(x) is a matrix algebra over the quaternions yet F ® A{x) is a matrix

algebra over F if and only if Px contains H(A). If X is reducible we can assume R

is reduced. Let (0) = fl U\p¡ where {/»,.} is an irredundant set of prime ideals of

R. The rings R/P¡ are the affine rings of the irreducible components X¡ of X. If
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A¡ = R/ P¡® A then H (A,) is contained in the product of the maximal ideals

which correspond to the real singular points x¡ on X¡ which are isolated in the

strong topology on X¡ and for which A(x) is a matrix algebra over the quaternion

algebra. This completes the proof of the theorem.
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