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ABELIAN EXTENSIONS OF REGULAR LOCAL RINGS

PAUL ROBERTS

Abstract. The integral closure of a regular local ring in a finite Abelian extension

of its quotient field is Cohen-Macaulay, provided that the degree of the extension is

not divisible by the characteristic of the residue field.

Theorem. Let R be a regular local ring, K its quotient field, and L a finite Galois

extension of K with Abelian Galois group, which we denote G. Assume that the order

of G is not divisible by the characteristic of the residue field of R. Then if S is the

integral closure of R in L, S is Cohen-Macaulay.

Proof. We first note that since L is assumed to be a Galois extension of K, and

thus separable, S is a finitely generated Ä-module. Since S is integrally closed, it is

therefore reflexive as an Ä-module; that is, the natural map from S to S** =

HomÄ(HomR(5, R), R) is an isomorphism (see Bourbaki [1, Chapter 7, §4.8]).

The action of the Galois group G on L makes L into a 2v[G]-module; since any

/v-automorphism of L must preserve the integral elements over R, S similarly

becomes an 2?[G]-module. The usual isomorphism: S <£>Ä K — L can then be

considered as an isomorphism of 2C[G]-modules.

The Normal Basis Theorem then says that there is an element of L whose

conjugates form a basis for L over K; or, in other words, that L is isomorphic to

K[G] as a K[G]-modu\e. Hence S is an 2v[G]-module such that S ®R K at K[G]

as 2v[G]-module.

We wish to show that 5 is a Cohen-Macaulay ring, and we will do this by

showing that it is isomorphic Xo Rn (where n is the degree of L over K) as an

Ä-module. We first reduce to the case where R is complete with algebraically

closed residue field.

Lemma. Let 2? —» R' be a faithfully flat extension of regular local rings. Then if

S" = S ®RR' and K' is the quotient field of R', we have:

(a) S' is a reflexive R'-module.

(b) IfS' - (R')n as R -module, then S = R" as R-module.

(c) S' is an R'\G]-module such that S' <8>R, K' = K'[G] as K'[G¡-module.

Proof of Lemma. Since R' is flat over R, the natural map from

HomÄ(M, N) ®R R' to HomÄ.(2\' ®Ä M, R' ®Ä N) is an isomorphism whenever

Ai is a finitely presented Ä-module; hence, applying this twice, S** ®Ä R' -»

(S')** is an isomorphism. Thus the diagram
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S ® R'

n
S**® R'

shows that 5' is a reflexive R '-module, proving (a).

To prove (b), we note that since R' is faithfully flat over R, tensoring with R'

preserves minimal free resolutions. Hence if S ®R R' is free over R', S must be

free over R.

Part (c) is obvious, since S' ®R, K' s (5 ®R K) ®K K' s K'[G].

From the Lemma we can assume that R is complete; we can also assume that the

residue field is algebraically closed (for this construction, see [2, Chapter 0, §6.8]).

Let k be the residue field of R. Since the order of G is relatively prime to the

characteristic of k, G is Abelian, and k is algebraically closed, k[G] is isomorphic

as a ring to a product of copies of k. Since R is complete, this decomposition can

be lifted to R[G], and R[G] is isomorphic as a ring to a product of copies of R.

Write this decomposition:

Ä[ G] - Rl X . . . X Ä„;    each R¡ isomorphic to R.

Since S is an Ä[G]-module, it must split also; we have:

S = S{x...xS„.

We note that this decomposition is canonical, since each S¡ is uniquely defined

as the set of elements of S which are annihilated by all elements of Ä, X . . . X Rn

whose ith component is zero.

Tensoring with K, we get

K[ G] = R[ G] ®R K = (/?, ® K) X . . . X (Rn ® K) ss K X . . . XK.

S ®R K = (5, ® K) X . . . X (S„ ® AT).

Since 5 ®Ä K ä K[G] as A"[G]-module and these decompositions are canonical,

we must thus have S¡> ®R K = R¡ ®R K » K for each /'. Since 5 is reflexive the

same is true for each S¡; hence each S¡ is a reflexive Ä-module such that

S, ®R K st K, and is thus isomorphic to a divisorial ideal of R (Bourbaki

[1, Chapter 7, §4.2]). Since R is a unique factorization domain, this implies that

S¡-R. Hence

S « S1, X . . . X S„ s R" as Ä-module.

Thus S is Cohen-Macaulay, and this completes the proof of the theorem.

It can be seen from the proof of this theorem that if R is assumed only to be

integrally closed rather than regular, with the other hypotheses as above, then S is

a direct sum of divisorial ideals. In particular, if R is a UFD, S is free over R. We

now give two examples to show that the other hypotheses cannot be weakened too

much.

Example 1. This example, which was shown to me by M. Höchster, shows the

necessity of the hypothesis on the characteristic of the residue field, at least for this

proof of the theorem.

S'

i

(ST*



abelian extensions of regular LOCAL RINGS 309

Let R be the ring Z2[X, Y, U, V]/(Y2 - AU - X2V) localized at the maximal

ideal (Z, X, Y, U, V), where Z2 denotes the ring of 2-adic integers. It can be

verified that 2 generates a prime ideal in R, and if 2 is inverted the resulting ring is

a localization of Z2[X, Y, V] and is thus a UFD; hence by Nagata's criterion R is a

UFD. Let K be the quotient field of R, let L = K[W ], and let S be the integral

closure of R in L. Then, letting a = {-(Y + XW), we have a2 - Ya + U = 0, so

a is in S. We will show that not only is S itself not free over R, but there are no

nonzero 5-modules which are free over R.

Suppose F were such a module. Choosing an R-basis for F then defines a ring

homomorphism from S to a ring of matrices with entries in R. Suppose W goes

to the matrix M. Then a goes to \(Y• I + X• M) = N, where I is the identity

matrix. Looking at a diagonal entry in this matrix gives an equation of the form

Y + Xm = In for some m and n in R. But this implies that Y is in the ideal of R

generated by X and 2, which is not the case. Thus such a module F cannot exist.

We remark that if R were regular in this example, this would show that there

were no Cohen-Macaulay modules over S with support equal to Spec(5). For a

discussion of this question we refer to M. Höchster [3].

Example 2. In this example we show that the conclusion of the theorem is false if

G is assumed only to be solvable, or even nilpotent. We start with the ring

Rx = k[[X, Y, Z, W]]/(XY - ZW), where k is any field of characteristic zero. 2?,

is an integrally closed domain and is a quadratic extension of the regular local ring

R = k[[X, Y,Z- W]\, in fact, 2?, is clearly generated over R by Z + W, and

(Z + W)2 = (Z - W)2 + 4XY is in R.

Now let a be any element of Ä, which is not a perfect square. Let 2v, be the

quotient field of 2?,, let L' = Kx[Va ], and let S' be the integral closure of 2?, in L'.

If L is the smallest Galois extension of K containing L', then L is generated over L

by a square root of the conjugate of a over K, so the degree of L over K is either 4

or 8, and L is a nilpotent extension of K. Furthermore, if S is the integral closure of

R in L, then 5' is a direct summand of 5 as an 2?-module, so that if S ' is not free

over R, neither is S. Thus it suffices to show that for suitable choice of a, the

integral closure of 2?, in Kx[Va ] is not a free 2?-module.

Since 2?, is an integrally closed domain, the principal ideal (a) is an intersection

of symbolic powers of height one prime ideals:

(a) = 2>1("') . . . P^n"\

An element r + sVä , with r and s in 2v„ is integral over Rx if and only if its

trace 2r and its norm (r2 - as2) are in 2?,; since 2 is a unit in 2?,, this amounts to

saying that r G 2?, and s2a G 2?,. Thus S' = Rx + iVa , where I = [s: s2a G 2?,].

Since an element s of 2C, is in 2?, if and only if í is in (RX)P for all height one primes

P, we have

2 = /».<«■> . . . P<?"\

where q¡ = -\n¡'ú n¡ is even and q. = -{-n¡ + \ if n¡is odd.

Let n be any positive integer, and let bx, . . ., b2n be 2n distinct nonzero elements

of k. Let P0 = (X, Z) and P¡ = (X - ¿>,.Z, if - ¿>,y) for / = 1, 2, . . ., In. Then
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the principal ideal (X - b¡Z) is P0 n P¡ (to see this, divide by A' - b¡Z; this gives

k[[Y, Z, W)]/{(W - b,Y)Z)). Let a = (X - bxZ\X - b2Z) . . . (X - b2nZ).

Then the principal ideal generated by a is P^2n) n Px n • • • n P2„> and the

corresponding fractional ideal / is Pq~"\

We wish to show that the minimal number of generators of ■Pu~") over /?, is

n + 1; thus, if « > 1, i>u~") cannot be free over R, since it would have to be free on

2 generators. We first multiply P^~n) by X"; since (X) = P0 n (X, W), this takes

P(¡~n) to the isomorphic ideal (X, Wf"K Thus the result will follow if we can show

that (X, W)in) = (X, W)n and that X", Xn~xW, ...,W form a minimal set of

generators for (X, W)n. The second of these statements follows easily, since

X", X"~lW, . . . , W form a minimal set of generators for {X,Wf in

k[[X, Y, Z, W]]/(Y, Z) m k[[X, W]] and hence also in Rv

To conclude that (X, W)n = (X, Wf"\ we must show that all zero-divisors of

R = k[[X, Y, Z, W]]/(X", ...,W,XY- ZW) are contained in (X, W). If we

invert Y, we can solve for X:

X = ^T = (y)W>       so(X,wy = (W").

Thus we have

[k[[X, Y, Z, W]]/ (X», ...,W,XY- ZW)]iY) m k[[Y, Z, W]\Y)/ (Wn).

Since any zero-divisor in the latter ring is clearly contained in (W), it will follow

that the zero-divisors of R are in (X, W) if we know that the map from R to R(Y) *s

injective; that is, that Y is not a zero-divisor.

Every element of R can be uniquely represented as a power series in the

monomials X'YJZkW' with i + I < n and k = 0 or / = 0. Multiplication by Y gives

another nonzero power series with the same properties, so Y is indeed a nonzero-di-

visor in R.

Thus we have shown that there are Galois extensions of R of degree 8 which are

not Cohen-Macaulay, and in fact there are such extensions such that the minimal

number of generators of the integral closure of R as an Ä-module is arbitrarily

large.
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