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MODULES WITH ARTINIAN PRIME FACTORS

EFRAIM P. ARMENDARIZ

Abstract. An R -module M has Artinian prime factors if M/PM is an Artinian

module for each prime ideal P of R. For commutative rings R it is shown that

Noetherian modules with Artinian prime factors are Artinian. If R is either

commutative or a von Neumann regular K-rmg then the endomorphism ring of a

module with Artinian prime factors is a strongly ir-regular ring.

A ring R with 1 is left ir-regular if for each a G R there is an integer n > 1 and

b G R such that a" = an+lb. Right w-regular is defined in the obvious way,

however a recent result of F. Dischinger [5] asserts the equivalence of the two

concepts. A ring R is ir-regular if for any a G R there is an integer n > 1 and

b G R such that a" = a"ba". Any left 7r-regular ring is 77-regular but not con-

versely. Because of this, we say that R is strongly ir-regular if it is left (or right)

w-regular.

In [2, Theorem 2.5] it was established that if R is a (von Neumann) regular ring

whose primitive factor rings are Artinian and if M is a finitely generated R-module

then the endomorphism ring EndÄ(Af ) of M is a strongly 77-regular ring. Curiously

enough, the same is not true for finitely generated modules over strongly w-regular

rings, as Example 3.1 of [2] shows. Obviously, it also fails for arbitrary regular

rings. These observations lead one to consider conditions on finitely generated

modules which ensure that the endomorphism ring is strongly 77-regular. A natural

one seems to be that of having Artinian prime factors. In fact, we establish that

such modules have strongly 77-regular endomorphism ring whenever the base ring is

either commutative or a regular K-ring.

Consider a finitely generated module M over a ring R. If R is commutative then

R is ^-regular if and only if its prime ideals are maximal [11]. Accordingly, when R

is commutative and 77-regular, M/PM is an Artinian module for all primes P. This

observation serves as a starting point.

Theorem 1. Suppose R is a commutative ring. For a finitely generated R-module

M the following conditions are equivalent.

(a) M has Artinian prime factors.

(b) S = EndR(M) is a strongly ir-regular ring.

(c) R/ArmR(M) is a ir-regular ring.
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Proof, (b) => (c): Since M is finitely generated, S satisfies a polynomial identity.

Hence each prime ideal of S is a maximal ideal (see e.g. [1]). Now R' =

R/AnnR(M) embeds in the center of S and S is an integral extension of R' [10]. It

follows that prime ideals of R ' are maximal ideals [3] and hence R ' is 7r-regular.

(c) => (a): This is clear.

(a) => (b): By [2, Proposition 2.3], S is strongly w-regular if and only if for each

a E S there is an integer / > 1 such that M = Ker a' ffi Ma'. Thus let a G S. Our

first step is to show that there is an integer / > 1 such that Ma' = Ma'+l. Assume

that no such integer exists. Because M is finitely generated, there is an ideal P of R

which is maximal among those ideals I of R having the property that Mak g

Mak+l + IM for all integers k > 1. We claim that P is a prime ideal of R. Thus

suppose A and B are ideals of R properly containing P and such that AB Q P. We

then have integers m, n such that Mam O Mam + l + AM and Ma" C Man + 1 +

BM. The second of these inclusions gives us A Ma" C AMa"+1 + PM, since

AB C P. Hence AMan+l C AMan+2 + PM, giving AMa" C AMan+2 + PM.

Continuing we arrive at AMa" Q AMan+m+1 + PM and therefore AMa" Q

Man + m+l + PM. Using this we then get Man + m = {Mam)an Q (Mam+i +

AM)a" Ç Man+m+l + PM, which contradicts the choice of P. Thus P is a prime

ideal as claimed. By assumption, M/PM is an Artinian module. But then the

sequence of submodules Ma D Ma2 D • • • must terminate modulo PM, provid-

ing the desired contradiction. This shows then that Ma' = Ma'+i for some integer

t > 1. Now a is an onto endomorphism of the finitely generated /?-module Ma',

and so a is 1-1 on Ma' since R is commutative [12]. Then Ker a n Ma' = 0

implies that Ker a' = Ker a'+l. It now follows easily that M = Ker a' ffi Ma',

completing the proof.

Examination of the proof of the implication (a) => (b) shows that commutativity

was used only to ensure that onto endomorphisms are 1-1. It has been shown in

[2, Theorem 2.2] that rings integral over their center and satisfying a polynomial

identity have the property that onto endomorphisms of finitely generated modules

are 1-1, a property which left Noetherian rings also have. Thus we are able to state

the following.

Theorem 2. Assume R is either a Pi-ring integral over its center or a left

Noetherian ring. If M is a finitely generated left R-module having Artinian prime

factor then EndÄ(A/) is a strongly tr-regular ring.

In view of this theorem one might ask if any Noetherian /?-module with Artinian

prime factors is Artinian. The answer is no, in general. An example in [9, p. 66]

provides us with a perfect ring D having a Noetherian non-Artinian module. Since

D/P is simple Artinian for any prime ideal P, such a module must have Artinian

prime factors. Before showing that the answer is affirmative when R is commuta-

tive, we note that over a semiprimary ring, all Noetherian modules are Artinian, so

the answer is (trivially) yes in this case.

Theorem 3. // R is a commutative ring and M is a Noetherian R-module with

Artinian prime factors then M is Artinian.
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Proof. By Theorem 1, R' = R/AnnR(M) is a 77-regular ring. Since M is a

faithful finitely generated R'-module, R' is isomorphic to a submodule of a finite

direct sum of copies of M. Hence R' is a Noetherian module. Any Noetherian

77-regular ring is Artinian so R ' is Artinian. But then M, being a finitely generated

R '-module, must be Artinian.

While it is false in general that Noetherian modules with Artinian prime factors

are Artinian, the following is true.

Theorem 4. If M is a Noetherian R-module with Artinian prime factors then

S = EndR(M) is semiprimary.

Proof. The proof of (a) => (b) shows that S is a strongly 77-regular ring. Thus

each nonnil one sided ideal contains a nonzero idempotent. It follows that J(S),

the Jacobson radical of S, is a nil ideal. By a theorem of L. Small (see [6, Theorem

2.1]), nil subrings of S are nilpotent, so that J(S) is a nilpotent ideal of S. Now

orthogonal idempotents of S/J(S) can be lifted to S. However M is Noetherian so

S can have no infinite set of orthogonal idempotents. It follows then that S/J(S) is

a semisimple Artinian ring.

This theorem generalizes the well-known fact that the . ndomorphism ring of a

Noetherian Artinian module is semiprimary.

We now turn to a result which covers [2, Theorem 2.3]. Recall that a (left) V-ring

is a ring all of whose simple left modules are injective. For the salient features of

K-rings we refer the reader to [4, Chapter 5].

Theorem 5. Assume R is a regular V-ring. If M is a finitely generated R-module

with Artinian prime factors then S = EndÄ(M) is a strongly ir-regular ring.

Proof. Let a G S. As in the proof of Theorem 1, there is an integer / > 1 such

that Ma' = Ma'+X. Suppose x G Ker al+'; if u = xa' ^ 0, then there is an ideal

P of R maximal among those ideals I of R for which u £ IM. Hence u G AM for

all ideals A of R properly containing P. If P is not a prime ideal then there are

ideals A and B of R properly containing P for which AB G P. Then u G BM so

that Au G ABM G PM. Since we also have u G AM we can write u = 2a,m,

where a¡ G A, m¡ G M. Because R is a regular ring there is an idempotent e G A

such that ea¡ = a¡ for each /'. But then u = eu G Au G PM, a contradiction. Thus

P must be a prime ideal and the module M/ PM is Artinian. Because R is a K-ring

and M/PM has finitely generated essential socle, we infer that M/PM is com-

pletely reducible and hence Noetherian. Then a induces ß G EndR(M / PM) and

(M/PM)ß' = (M/PM)ß'+x and this yields Ker /?' = Ker ß'+1. But then xa' G

PM, which is the desired contradiction. It now follows that Ker a' = Ker a'+1, M

= Ma ' © Ker a ', and so S is strongly 77-regular.

Corollary 5 [2, Theorem 2.3]. If R is a regular ring whose primitive factor rings

are Artinian then EndR(M) is strongly ir-regular for any finitely generated R-module

M.
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Proof. It is enough to note that (i) R is a F-ring, and (ii) prime factor rings of R

are Artinian. That (i) holds follows from [4, Corollary 5.13] while [8, Theorem 3, p.

239] guarantees (ii).

It is straightforward to see that a finitely generated projective Artinian module

over a semiprime ring is completely reducible. Thus the proof of Theorem 4 can be

used to prove the next result.

Theorem 6. Let R be a regular ring and M a finitely generated R-module. If

M/PM is a projective Artinian R/'P-module for each prime ideal P of R then

EndÄ(M) is strongly m-regular.

In the first version of this article we asked whether or not a finitely generated

Artinian module over a regular ring is Noetherian. An affirmative answer would

then imply the statement,

over any regular ring, finitely generated modules with Artinian , .

prime factors have a strongly w-regular endomorphism ring.

Recently, K. Goodearl has constructed examples of cyclic Artinian non-

Noetherian modules as well as Noetherian non-Artinian modules over regular rings

[7]. Thus our original question has a negative answer. However the validity of (*)

still remains open, and would be true should the following question have a positive

response. If M is a finitely generated Artinian module over a regular ring, is every

onto endomorphism of M also 1-1?
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