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GENERALIZATIONS OF A THEOREM OF MUTYLIN

SETH WARNER

Abstract. We generalize Mutylin's theorem that the only complete, locally

bounded, additively generated topological fields are R and C by showing: (1) the

only complete, locally bounded, additively generated topological division rings with

left bounded commutator subgroup are R, C, and H; (2) a commutative, Hausdorff

topological ring A with identity is a Banach algebra over R, equipped with the

absolute value \..\p for some p e (0, 1], if (and only if) A is complete, locally

bounded, additively generated, and possesses an invertible topological nilpotent.

In 1968, Mutylin [8, Theorem 1] proved that the only complete, additively

generated, locally bounded fields were R and C (a topological ring is additively

generated if it contains no proper open additive subgroups; any connected ring is

additively generated). This theorem implies, of course, the commutative part of

Pontrjagin's classification of locally compact, connected division rings. Mutylin's

proof depended essentially on the Jordan Curve Theorem for the plane.

Here we shall generalize Mutylin's theorem in two ways, and our proofs will not

depend on any deep properties of C other than the fact that C is locally compact

and has roots of unity of all orders, a fact needed in elementary proofs of the

Gelfand-Mazur theorem and Ostrowski's theorem.

Convexity is unneeded in proofs of basic theorems concerning general Banach

algebras. More precisely, basic theorems, such as the Gelfand-Mazur theorem, hold

for Banach algebras over R or C equipped with the absolute value \..\p for some

p G (0, 1], as Zelazko has shown [12].

A seminorm on a ring K is a function N from K to R such that for all x, y G K,

N(x) > 0, N(-x) = N(x), N(xy) < N(x)N(y), and N(x + y) < N(x) + N(y).

The null space N ~ '(0) of a seminorm N is an ideal, and TV is a norm if its null

space is (0). An absolute semivalue on a ring K with identity is a seminorm A such

that A(\) = 1 and A(xy) = A(x)A(y) for all x,y G K. The null space of an

absolute semivalue A is a prime ideal, and A is an absolute value if its null space is

(0).
If N is a seminorm on K, we define Ns by Ns(x) = limn_>00Ar(x")1/". Then x is a

topological nilpotent (that is, limn_(X)x" = 0) if and only if Ns(x) < 1. If K is

commutative, or if K is a division ring whose commutator subgroup T is norm-

bounded, then Ns is a seminorm. Indeed, in the latter case, to show that Ns(x + y)

< Ns(x) + Ns(y), one needs to modify the usual proof in the commutative case by
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using the variant of the Binomial Theorem that states that (x + y)n =

^"k-osn,kx"~kyk where each sn k is the sum of (nk) members of T and s„ 0 = sn „ =

1; and to prove that Ns(xy) < Ns(x)Ns(y), one uses the fact that (xy)" = g„xy

where g„ G T. A seminorm N is spectral if N = TV,, or equivalently, if N(x") =

N(x)" for all x G K and all « > 1. If Ns is a seminorm, it is a spectral seminorm.

Theorem 1. Let K be a division ring equipped with a Hausdorff ring topology. The

following conditions are sufficient {and necessary) for K to be topologically isomorphic

to R, C, or the topological division ring H of quaternions:

1. K is complete.

2. K is locally bounded.

3. K is additively generated.

4. The commutator subgroup Y of K is left bounded.

Proof. K contains a nonzero topological nilpotent [4, Exercise 21, p. 121], and

there is a bounded neighborhood U of zero such that UU C U [4, Exercise 20d), p.

121]. Let V = TU. Then F is a left bounded neighborhood of zero such that

aV = Va for all a 6 Í. By a generalization of a theorem of Conn [6, Theorem 6.1]

due to Lipkina [7], the topology of K is given by a norm TV, and as the topology of

K is not discrete, r is norm bounded. Therefore Ns is a spectral norm (as AT is a

division ring). By a theorem of Aurora [3, Theorem 1], TV, = supceA:. Ac, where for

each c G K*, Ac is an absolute value (as K is a division ring) satisfying Ac < TV,

and Ac(c) = TV,(c). For each c G K*, {x G K: Ac(x) < 1} is a neighborhood of

zero and therefore is not an additive subgroup, so A c is archimedean. Conse-

quently, by Ostrowski's theorem [5, Theorem 2, p. 131], there exist an isomorphism

ac from K onto a division subring of H and a number pc G (0, 1] such that

Ac(x) = \oc(x)\p' for all x G K. Therefore K has characteristic zero and thus

contains the rational field Q. Let r G Q*. Since \r\Pr = Ar(r) = Ns(r), \r\ < 1 if and

only if Ns(r) < 1, that is, if and only if r is a topological nilpotent. Consequently,

the topology induced on Q is not discrete and also is not the /»-adic topology for

any prime p (since the topological nilpotents for the /»-adic topology form a

nonzero additive subgroup of Q). Therefore by 1 and [10, Corollary 2], the closure

of Q in K is the real field R.

Since K is locally bounded as a ring, it is a fortiori locally bounded as a vector

space over its subfield R. Consequently, by a theorem of Aoki [1], rediscovered by

Rolewicz [9], there is a vector space norm M on the R-vector space K relative to the

absolute value \..\p on R for some /» G (0, 1] that defines the topology of K. As

multiplication is jointly continuous in both variables, there is an equivalent Banach

algebra norm ||..|| (defined by ||x|| = t~2M(x), where t > 0 is such that M(x) < t

and M(y) < t imply M(xy) < 1). Thus K is a normed division algebra over R,

equipped with |..|'\ By the Gelfand-Mazur theorem, K is topologically isomorphic

to R, C, or H.

A similar proof characterizes those commutative topological rings with identity

that are real Banach algebras:
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Theorem 2. Let A be a Hausdorff commutative topological ring with identity e. The

following conditions are sufficient (and necessary) for A to be a Banach algebra over

R, equipped with the absolute value \..\p for some p G (0, 1]:

\. A is complete.

2. A is locally bounded.

3. A is additively generated.

4. A contains an invertible topological nilpotent.

Proof. The conditions are necessary, for r • e is an invertible topological nilpo-

tent for any nonzero r G R such that \r\ < 1, and A is connected and hence

additively generated.

Sufficiency. By 2, 4, and a generalization of Cohn's theorem [2, Corollary of

Theorem 3], [11, Theorem 4], the topology of A is given by a norm N. Let J be the

null space of the associated spectral seminorm Ns. By Aurora's theorem [3,

Theorem 1], Ns = supc(E/)xy Ac, where for each c G A\J, Ac is an absolute

semivalue satisfying Ac < Ns and Ac(c) = Ns(c). Let Jc be the null space of Ac, a

prime ideal of A, and let Kc be the quotient field of A/Jc. In a natural way Ac

induces an absolute value on A/Jc, which has a unique extension to an absolute

value A'c on Kc. If the closed unit ball Bc of A'c were an additive subgroup, then

Bc n (A/Jc) would also be an additive subgroup; its inverse image under the

canonical epimorphism (pc from A to A/Jc, namely, {x G A : Ac(x) < 1}, would

then be an additive subgroup, which is impossible by 3, for as Ac < Ns < TV, that

set is a neighborhood of zero. Therefore A'c is an archimedean absolute value, so

A /' Jc has characteristic zero and hence A does also.

Next, we shall show that for each integer m > 1, m- e is invertible. In the

contrary case, there would be a proper ideal and hence a maximal ideal M

containing m- e. As A is a complete normed ring, the set of its invertible elements

is open, so M would be a closed ideal. Then A/M would clearly satisfy conditions

1-4 and hence, by what we have just proved, would have characteristic zero, a

contradiction, since m- e G M.

Therefore A contains the rational field Q. By Ostrowski's theorem, there exist an

isomorphism ac from Kc onto a subfield of C and a number pc G (0, 1] such that

A'c(z) = |cri.(z)|''e for all z G Kc. Let uc = ac ° q>c, a nonzero homomorphism from A

to C; then Ac(x) = \uc(x)\Pc for all x G A, and in particular, Ac(r) = \r\Pc for all

r G Q. Proceeding as in the proof of Theorem 1, we conclude that A contains R

and that A is a Banach algebra over R relative to the absolute value \..\p for some

P G (0, 1].

Corollary. A commutative Hausdorff topological ring A with identity e is a

Banach algebra over C, equipped with the absolute value \..\p for some p G (0, 1], if

and only if A satisfies 1 -4 of Theorem 2 and, in addition, possesses an element i such

that i2 = - e.
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