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COMPLETE INTERSECTIONS IN C AND R2n

MARIE A. VTTULLI1

Abstract. When C" is identified with R2" in the usual way, algebraic varieties over

the complex numbers give rise to varieties over the reals. We ask when a (strict)

complete intersection in C yields a (strict) complete intersection in R2". If the

original variety V is connected, a necessary and sufficient condition that its image

be a complete intersection is that V be irreducible. We give examples that show

that without the connectedness assumption the conclusion is false.

In the course of proving this result we give an algebraic analogue of a result by

Ephraim on germs of complex and the corresponding real analytic varieties. As our

methods apply to varieties over the algebraic closure of an arbitrary real closed

field the paper is written in this more general setting.

1. Preliminaries. Throughout this paper R will denote a real closed field and C its

algebraic closure. Thus C = R[i] where i2 = - 1.

By an algebraic variety in Rm (resp. in Cm) we mean the zero set of a collection

of polynomial equations. We recall some definitions and results from the theory of

real varieties. One can consult [1] or [3] for more details and proofs of these

assertions.

Let P = R[x{, . . . , xm] be a polynomial algebra over R. Let o(P) = {/ G P\f

= g2 + ■ ■ • +g2 for some g„ . . . , gr G P}. Given an ideal a G P define a set

Sa(a) by

Sa(a) = {f G P\[f2 + o(P)] n a * 0).

Definitions 1.1. (i) The ideal a is a real ideal if Sa(a) = a.

(ii) A real prime of P is a prime ideal p of P such that p is a real ideal,

(iii) The real radical of a, denoted rlrad(a), is the intersection of all real primes of

P which contain a.

Proposition 1.2. Let P, a be as above. Then

(i) SJa) is an ideal containing a.

(ii) rlrad(a) = rad(5CT(a)) is a real ideal.

(iii) The minimal real primes of a are the minimal primes o/rlrad(a).

(iv) rlrad(a) = rad(a) if and only if every minimal prime of a is real.

(v) If p is a real prime of P and B = P ®RC then pB is a prime ideal of B.

If E g P is a subset let V(E) = [x G Rm\f(x) = 0 for all/ G E). If X c Rm is

a subset let I(X) = {f G P\f\x = 0). We now state the real nullstellensatz.
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Theorem 1.3 (Dubois [2], Risler [7]). If a c P is an ideal, then I(V(a)) =

rlrad(a).

We now wish to describe the complexification of a real variety. The situation is

entirely analogous to what happens over the real and complex numbers. In this

setting the complexification was described by Whitney in [8].

Let V c Rm be a variety. Regarding fimasa subset of Cm we wish to describe

the complexification of V, denoted V*. V* is the (unique) smallest complex variety

in Cm containing V as its real points. As above, let Z = I(V) = {/ G P\ f\ v = 0}.

Let I* = I(V*) = {/ G B\f\y. = 0). Then I* = I ®R C. If h„ . . . , h, are the

minimal (real) primes of I, then pf = p, ® C, . . ., t>* = p, ® C are the minimal

primes of I*. We note that V and V* have the same number of irreducible

components.

For an irreducible variety F in Rm we define the dimension of V over R,

denoted dimÄ V, by dimÄ V = trdegÄ P/I(V). For an arbitrary variety in Rm the

dimension is the maximal dimension of an irreducible component. Hence dimÄ V

= dimc V*.

Viewing F as a topological space, we have dimension and codimension defined

in terms of chains of irreducible closed subsets.

In lieu of the following lemma we have

dim* V = dim V,       codim( V, Rm) = ht Z( V).

Lemma 1.1. Let 93 c R[x{, . . . , xm] be a real prime of dimension d. Then there

exists a chain of distinct real primes

(0) - ®0 < • • • < SBm_rf = 93 < 93m_d+1 < • • • < 93m.

Proof. Since S is a real prime we know there exists a simple point/» G Rm for 99

(see [1, p. 49, Theorem 4.7]). Hence there exist /,,... ,fm-d in 99 such that the

Jacobian matrix of (/,, . . . ,fm-d) at/» has rank m — d.

Let   m c P   denote   the   real   maximal   ideal   corresponding   to   /».   Thus

(/i. •• ->L-d)Pm = «m   and   there   exist L-4+» ■ ■ • >fm   in   mpm   such   that

/,,...,/„ is a regular system of parameters. Let 93, be the prime of P such that

(93,)m = (/„ . . . ,f)Pm for / = 1, . . . , m. Then 93, is a prime of height i (see [6, p.

121, Theorem 3.6]). Since /> G Rm is a simple point for each 93, this yields the

required chain of real primes.

2. Main results. Regard C as R2n having coordinates xx,yv...,x„,y„. If

X c C let X' denote the corresponding subset of R2" and similarly if p G C let

/»' denote the corresponding point in R2n.

Let C[zv . . ., zn] = C[z] and C[xu v,, . . . , xn, vj = C[.>c:,.y] be polynomial

algebras over C. Identifying C[x,y] and R[x,y] ®R C every polynomial / G

C[x, y] can be written uniquely in the form / = g + ih, where g, h G Z?[x, v]. In

this representation g (resp. A) is called the real (resp. imaginary) part off.

Define a C-algebra map <p: C[z] -» C[x, v] by

<P(*x) = *x + '>x>       X = 1, . . . , «.



COMPLETE INTERSECTIONS 333

If / G C[z] let g, h G R[x,y] be the real and imaginary parts respectively of <p(/).

Thus for a point/» G C" we have/(/») = 0 iff g(p') = 0 = h(p') where/»' G R2n.

(2.0) Let V c C" be the zero set of polynomials/,, . . . ,fs and let

2c(K) = {/GC[z]|/|„ = 0},

IR(V')-{f<=R[x,y]\f\v, = 0}.

Let gA and /¡x denote the real and imaginary parts of <p(/x) respectively, for

a = 1,..., s. Then by the Hilbert and real nullenstellensatzen we have

IC(V) = radC/,,...,/),

2Ä(K') = rlrad(g„...,gi,/Il,...,/Ii).

We now give an analogue of a theorem by Ephraim [4, Theorem 2.1] on germs of

complex and their associated real analytic varieties. Our method of proof in one

direction follows Ephraim's argument. Before we state this result we establish some

helpful notation.

For a polynomial/ G C[wv . . . , wm] = C[w] let/ = 2 äawa where/ = 2 aaw",

the index a runs through elements of Nm and the bar denotes "complex" conjuga-

tion. For a subset X c Cm let X = {p\p G X) denote the conjugate subset.

Proposition 2.1. With notation as in (2.0), let V g C" be a variety with defining

ideal I = IC(V) = (/„ . . . ,/). Then T = IR(V) = (g„ . . . , gs, hv . . . , hs) if and
only if V is irreducible.

Proof. Let a = (g,, . . . , gs, /»,, . . . , hs) so that 2' = rlrad(a).

Suppose that V is irreducible so that / is prime. We claim that / = a <8>R C is

prime (and hence a is prime).

We first note that / = (g, + ihv . . . , gs + ihs, g, - z'/i,, . . ., gs - ihs).

Define a C-algebra isomorphism \¡/: C[uu . . . , un] ®c C[vx, ...,»„]-»

C[xv v„ . . .,x„, vjby

<PM = xa + '>«>       a = 1, . . . , n,

^(Vß) = xß- iyß,       ß » 1,.. ., n.

xp(fx(ux, ...,u„)) = gx + ihx,       X= l,...,s

4>{fP(vi, . . . , ü„)) = gp - ih9,       p = 1, . . ., s.

Then

and

Thus ^_1(/) = (fi(u), . . ., f(u), fx(v), . . . ,fs(v)) is prime as the latter is the ideal

of the irreducible variety V X V in C2".

Hence a is prime. Since 2' = rlrad(o) it suffices to see that o is a real prime. It

thus suffices to exhibit a real simple point for a (see [1, p. 49, Theorem 4.7]).

Let d = dim V = trdegc(C[z]/2). Then

trdegc(C[x, v]/a ® C) = 2d so that trdegR(R[x,y]/a) = 2d.
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Let/» G F be a simple point so that the Jacobian matrix of (/,,.. .,/,) at/» has

rank n — d. As we have

we see that/ is a simple point for F and hence (/»,/») is a simple point for V X V.

In lieu of the isomorphism »p above we conclude that the Jacobian matrix of

(g, + ihx, . . ., g, + ihs, g, — /A,, . . . , g, — /A,) at />' has rank 2« — 2i/. As this

rank is independent of the choice of ideal generators we have the Jacobian matrix

of (g,, . . . , g„ A,, . . . , A,) at/»' has rank 2n — 2d. Hence/»' is a real simple point

for o and o is a real prime.

Conversely, assume /' = (g,, . . . , g„ A,, . . . , A,). Then Z' ®R C = (g, +

/'A,, . . . , g, + /'A,, g, - /A,, . . ., g, - /A,) is the ideal defining the complexification

(V)* of V. Hence (V)* is isomorphic to F X F as above.

Let / denote the number of irreducible components of V. By the first half of the

proof, V has / components. Then (F')* has / components while V X V has I2

components. Thus / = I2 so that / = 1.

Remark 2.2. We note that as in the proof of (2.1) if V c C" is an irreducible

variety then V c R2n is also irreducible. More generally the irreducible compo-

nents of V correspond to those of V, dim(F') = 2 dim(F) and codim(F', R2n) =

2 codim( V,C).

Before we state our main result we recall some definitions and a result by

Hartshorne on complete intersections and connectedness. The reader is referred to

Hartshorne's paper [5] for a proof of Proposition 2.4.

Definition 2.3. A variety V in Rm (resp. in Cm) is said to be a strict complete

intersection (s.c.i. for short) if its ideal of definition is generated by 5 polynomials

where s is the codimension of V in Rm (resp. in Cm).

We will say a variety V in R m is a weak complete intersection (w.c.i. for short) if

its ideal of definition is the nilradical of an ideal generated by í polynomials where

s = codim(F, Rm).

Proposition 2.4 (Hartshorne). Let X be a connected, locally noetherian scheme

and let Y be a closed subset of X such that for each y G Y the local ring <QXj, has

depth at least 2. Then X — Y is connected.

In what follows, by component we mean irreducible component. Our main result

is

Theorem 2.5. Suppose a connected variety V c C is an s.c.i. Then V c R2n is a

w.c.i. if and only if V is an s.c.i. if and only if V is irreducible.

Proof. If V is irreducible then (2.1) entails V is an s.c.i. and hence a w.ci.

So suppose V is a w.c.i. Notice that V is also connected. If not, the components

of V (and hence of V) could be divided into two disjoint classes, contradicting the

connectedness of V.
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Let U c C2" denote the complexification of V so that U is also connected. We

claim that U in C2n is a w.c.i. For let I = IR(V) = rad(Ä:,, . . . , k^) where

s = codim(K, C"). As 2 is a real ideal we know that every minimal prime of I is

real so that if 2 = px n • • • flty then 2* = pf n • • • C\p*. Now R[x,y] c

C[;c, v] is an integral extension of domains and the former is integrally closed in its

quotient field, so that the going-down property is in effect. Hence pf,..., pf are

the minimal primes of the ideal in C[x,y] generated by kx, ..., k^ so that IC(U) is

the radical of (kx, . . . , k2s)C[x, v]. Hence C/ is a w.c.i.

We will argue using the topological properties of Spec(C[x,y]/Ic(U)) and since

this scheme is homeomorphic to Spec(C[x,y]/(kx, . . ., k^)) we may and shall

assume that 2* = IC(U) = (kx, . . . , k^). (Our ideals are now taken in C[x,y].)

Since ht 2* = codim(t/, C2") = codim(K', R2n) = 2s we see that *„..., k2s is

a regular sequence in the Cohen-Macaulay ring C[x, v]. Hence .4 = C[;t,y]/2* is

again Cohen-Macaulay (see [6, (16.B)-(16.D)]). Thus if Y G X = Spec(A) is closed

of codimension at least two, X - Y is connected by Proposition 2.4. Since C is

algebraically closed we have the same property for U.

This entails V is irreducible. For let <p: C2" -» C2" be the isomorphism

«p(x„ v„ . . . , xn,yn) = (jc, + iy,,..., xn + iyn, xx - iyx, . . . , x„ - iy„).

Let Vx, . . . , V¡ denote the components of V and let £/,, .. ., U¡ denote the

corresponding components of U. Assume that / > 1. Then as in (2.1) we have

<p(Uj) = Vj X Vj    and   <p(U) = Vx X Vx u • • • U V, X V,.

Let H^ = U i<f U, n Uj. Then codim(H/, {/) > 2 since

v(w)= U^n ^ x F,, n y,
i<J

has codimension at least two. But the components Ux — W, . . ., U, — W of

U — W are disjoint, a contradiction.

Hence Kis irreducible and V is an s.c.i. by Proposition 2.1.

Remark 2.6. The statement and proof of Theorem 2.5 carry over verbatim to the

setting of germs of complex analytic varieties and the associated real analytic

germs. Instead of our Proposition 2.1, one has Ephraim's result (cf. [4, Theorem

2.1]). If 2nA denotes the ring of germs of real-analytic functions in 2« variables then

the germ of a real analytic variety is defined by a reduced real ideal. So one again

has the bijective correspondence between components of the real analytic germ and

the corresponding scheme and Hartshorne's results can again be invoked.

3. Examples. We conclude by giving some examples that illustrate our results.

(3.1) Let V G C2 be the union of the z, and z2 axes so that IC(V) = (z^j). Then

V is connected and is an s.c.i. but is reducible. Let/ = zxz2.

Then g = xxx2 — yxy2 and h = xxy2 + x2yx are the real and imaginary parts of

/respectively. So IR(V) = rlrad(g, h) = (xx,yx) n (x^y^-

We note that (g, h) is not a real ideal. For (xxx2)2 + (xxy2)2 = xxx2g + xxy2h

e (g, h) while xxx2 £ (g, h).
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(3.2) Let F c C2 be the union of the lines z, = 0 and z, = 1 so that IC(V) =

(zx(zx — 1)). Then V is an s.c.i., reducible and disconnected. In this case V =

V(xx, v,) U V(xx - 1, v,) so that IR(V) = (xx(xx - 1), v,) and V is an s.c.i. Thus

without the connectedness assumption the conclusion of Theorem 2.5 is false.
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