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LINEAR CONVOLUTION INTEGRAL EQUATIONS WITH

ASYMPTOTICALLY ALMOST PERIODIC SOLUTIONS

G. S. JORDAN, W. R. MADYCH AND R. L. WHEELER1

Abstract. Let ¡l be a bounded Borel measure and / be asymptotically almost

periodic. Conditions are found which ensure that certain bounded solutions of the

linear convolution integral equation g « fi = / are asymptotically almost periodic.

This result is also extended to the case where the measure ¡i is replaced by a

tempered distribution t for which convolution with bounded functions makes

sense.

1. Classical convolution equations. Recently Fink and Madych [7] studied the

asymptotic behavior as t -» oo of certain bounded solutions of the linear integral

equation

g * MO = C g{t - s) dn(s) = f{t),       -oo<i<oo, (1)
•'-co

where ¡i is a bounded Borel measure on R = (-oo, oo), and f(t) belongs to

Lx = LX(R) with/(/) -» 0 as / -^ oo. In this paper we show that the main result of

[7, Theorem 3] may be extended in two directions. First, in this section (see

Theorem 1) we show that Theorem 3 of [7] holds for more general forcing functions

/ than are considered there. Then, in §2 we show that the conclusion of Theorem 1

holds if the measure ¡x is replaced by a tempered distribution t for which

convolution with bounded functions makes sense.

We will use the notation of [7]. In particular, a function g in L°° is said to satisfy

the tauberian condition T if

lim     \g(t + s)-g(t)\=0. (T)
t-KX>,S—>0

If m is a positive integer, we say that / G L°° satisfies property M(f, m) if

linv^/ÍO = 0 and j%tm~x\Kt)\ dt < oo. By M(f, oo) we mean that M(f m) holds

for each positive integer m. If / is an almost periodic function (/ G a.p.), exp/

denotes the set of exponents off (see [6, Chapter 3]).

Also, 911 denotes the space of bounded Borel measures. If ju, G 91t, let £(£) =

f-xe~*' dn(t) be the Fourier transform of ft and A(/t) = {£ G R: ß(£) = 0} be the

set of zeros of ß. Finally, we say that /x G 911 satisfies property M A(ju) if for every

§ G A(/t) there exists a positive integer ny (necessarily unique) such that the

function Vj defined by Vj(£) = (£ - £,)_"!tî(£) is the Fourier transform of a measure
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Vj G 911 with Vjdj) ¥= 0. Note that if A( ¡x) = 0, then jx trivially has property

MA(li).

Theorem 1. Suppose g is a bounded solution of equation (1), where

(i) A( fi) has no finite accumulation point,

(ii) [i satisfies property M A(li),

(iii)/ = /[ + f2 where/, G a.p. and f2 satisfies property M(f, m) for m = sup{m-}

where the numbers mj are defined in the previous paragraph,

(iv) g satisfies condition T.

Then g = g, + g2 wAere g, G a./», with exp g, Ç A(/i) U exp/„ and lim,^ g2(i) =

0.

In the case where fx(t) = 0, Theorem 1 is Theorem 3 of [7]. (More restricted

versions of [7, Theorem 3] where, in particular, A( ¡i) is finite are obtained in

Jordan and Wheeler [8, Theorem 1], and in Levin and Shea's three part paper

[9, Theorem 5c].) On the other hand, in the case where/ = /, is a.p., a related result

which guarantees that bounded, uniformly continuous solutions of (1) (with ¡x

absolutely continuous) are a.p. was obtained by Lewitan [10]. (See, also, Doss [4]

and Lemma 2 below.) Finally, the nature of bounded, uniformly continuous

solutions of the homogeneous form of equation (1), i.e., with/(r) = 0, was investi-

gated by Beurling in [2], [1], and now constitutes one aspect of spectral analysis;

see [9, §8] for a brief discussion which includes references to appropriate literature.

Our proof of Theorem 1 consists of reducing the problem to considering

separately the case where /(/) = f2(t) —* 0 as t —> oo, and the case where / = /, is

a.p.

Lemma 1. Suppose g is a bounded solution of equation (1) which satisfies the

tauberian condition T, and f = /, + f2 where /, G a.p. and lim,^^ f2(t) = 0. Then

there exists a function h which is bounded, uniformly continuous on R, and which

satisfies h * n(t) = fx(t) for t G R.

The idea of Lemma 1 is implicitly contained in the discussion given in §20, pp.

567-568 of [9]. For completeness we include the proof.

Proof. The e-translation set of/, is

T(fx, e) = {sGR: \fx(t + s) - fx(t)\ < e for all / G R }.

Since /j G a.p., we can find Sj G T(fx, \/j) for/ = 1, 2, ... , so that lim^^j, =

oo. Since g is bounded and satisfies (T), Lemma 3.2 of [9] guarantees that there

exist a subsequence {sJk} of {sj} and a bounded, uniformly continuous function h

on R such that

lim   ( sup |git + s.) - h(t)\) = 0   for every d > 0. (2)
*->"»  *■ \t\<d >

Fix t G R and observe that by (1)

g * /t(/ + sJt) = /,(/ + sJt) + f2(t + sJk) (3)
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for k = 1, 2, ... . Thus, if we let k —> oo in (3) and use ¡i G 9H, (2), sJt G

T(fx, 1/4) and f2(t) -» 0 as t -^ oo, we get that A * ft(i) = /,(/)• This completes the

proof of Lemma 1.

The following lemma relates properties of bounded, uniformly continuous solu-

tions of equation (1) with / G a.p. to those of bounded, uniformly continuous

solutions of the homogeneous equation

g * ft(í) = 0,       r € R. (4)

Lemma 2. Assume that ¡i G 911. If every bounded, uniformly continuous solution g

of the homogeneous equation (4) is a.p., then, for each f G a.p., every bounded,

uniformly continuous solution g of equation (1) is a.p.

When n(t) = f'_xk(s) ds with k G L\R), Lemma 2 is due to Doss [4, Lemma

2]. The proof for general ft G 9lt follows in exactly the same manner as is

indicated by Doss in [4] for the case where ft is absolutely continuous. Namely, use

Bochner's proof of Theorem 4 in [3] with the differential operator Ag replaced by

the integral operator Kg = g * ¡i throughout.

Proof of Theorem 1. By Lemma 1 there exists a bounded, uniformly continu-

ous solution A of A * ft = /, on R. Since A(ft) has no finite accumulation point,

every bounded, uniformly continuous solution A, of A, * ft = 0 is a.p. (See, e.g.,

[9, Proposition 8.1].) Thus, by Lemma 2, A G a.p. It is easy to verify that exp A C

A(ft) u exp/,.
Now, define G(t) = g(t) - h(t), t G R. Then G satisfies G * ¡i = f2 on R, and by

Theorem 3 of [7], G = Gx + G2, where G, G a.p. with exp G, Ç A( ft) and

linL^^G^f) = 0. Thus, g = gx + g2 where g, = G, - A and g2 = G2 satisfy the

conclusion of the theorem.

2. Extension to distributions. In this section we show that Theorem 1 holds if the

measure ft is replaced by a tempered distribution t for which, roughly, g * t makes

sense for bounded g.

We say that a tempered distribution t on R satisfies property H if the convolu-

tion t * <j> G Ll(R) for every <j> in the Schwartz space S = S(Ä). (The definitions

of S, tempered distributions, the convolution t * <j>, and Fourier transforms of

tempered distributions are all standard; e.g., see [5].) If g G L°°, define the linear

form g * t: S -» C by the formula g * t(<¡>) = g * (t * <j>)(0) where ^(í) = </>(-/) and

the first convolution on the right-hand side is taken in the classical sense.

Lemma 3. If t satisfies property H and g G L00, then g * t is a tempered

distribution.

Proof. Since |g*T(<f>)| < UglUIlT * <í>||,, the lemma is true if the mapping

<b -» t * 0 is continuous from § into L1.

Let ( be a function in S whose Fourier transform, \p, has the following

properties: ty is nonnegative, \p(i-) = 1 if ||| < 1, and »//(£) = 0 if |£| > 2. For any

positive number r define ^r by the formula \(/r(t) = r\¡/(rt). Now suppose that {<£„} is

a sequence in S, <¡>n —> <£ in §, and t * <bn -> f in L1. Clearly t * <t>„ * \pr converges to
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T*<p*\pr=f*\pr in Lx for each positive r. Now ||t * <i> — /||, < ||t * <j> —

t * <¡> * \pr\\x + \\r * <p * \fir — f\\x, and choosing r sufficiently large it is clear that

the right-hand side of the above inequality can be made arbitrarily small. Hence

t * <b = f. It follows that the mapping <f> -» t * </> has a closed graph in § XL1 and

hence must be continuous. (For the variant of the closed graph theorem used here

see, for example, [5].)

Various properties of tempered distributions satisfying property H should be

clear from the definition. For example, the Fourier transform of such a distribution

must be a continuous function.

Clearly, bounded measures and certain linear combinations of their derivatives

are tempered distributions which satisfy property H. For example, consider the

distribution whose Fourier transform f is given by

2-1

where the /2,'s are Fourier transforms of bounded measures /i,- G 9lt, and each

Pj(® = 2   «,,/(«)'>       2=1,...,",
/=o

is a polynomial in (/'£). Then

g * r(t) =tr PAD^(t - s) diij(s)
j=\  J-œ

where Pj(D)g(t) = ^%0aj,g('\t) and g('\t) is the /th derivative of g.

If t enjoys property H, the definitions of A(t) and property MA(t) are analo-

gous to those in §1 in the case where t G 91t. Namely, A(t) = {£ G R: f(|) = 0},

and we say that t satisfies property M A(t) if for every £, G A(t) there exists a

positive integer m, such that the function />■(£) = (£ — ̂ ■)_"*f(i) is the Fourier

transform of a tempered distribution having property H and £,(£,) # 0.

Theorem 2. Suppose t satisfies property H, g is a bounded solution of g * t = /

and the following are true:

(i) A(t) Aas no finite accumulation point,

(ii) t satisfies property MA(r),

(iii)/ = /, + /2 where fx G a.p. and f2 satisfies property M(f, m) for m = sup{m }

where the numbers mj are defined in the previous paragraph,

(iv) g satisfies condition T.

Then g = g, + g2 vv/im? g, G a.p. with exp g, Ç A(t) u exp/„ a/W lim,,,^ g2(/) =

0.

Proof. Let <#>(.*) = e~x . Clearly, g * (r * <b) = f * <¡> + f2* <j>. It follows from

(t * <i>H£) = f(|)4>(|) and A(<i>) = 0, that A(t * <j>) = A(t). Also, for each e > 0,

T(fx * <b, e) D T(/,, £/||<f>||i), so that/, * <(> G a.p.; in addition, by Lemma 4.7 of [6]

exp(/, * <i>) = exp/,. Finally, Lemma 3 of [7] implies that/2 * </> satisfies property

M(f2 * <í>, m)- Thus, Theorem 2 follows from Theorem 1 with /i = t * <b.
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For an example, consider the integrodifferential equation

2    T 8(n(< - *) d^s) = /(/),       t G R, (2.2)

where ft, G 911, / = 0, . . . , n. Clearly, this equation is a special case of g * t = /

where r has property H and f(£) = ~Z"=0(iO'ßt(0- We say that £0 G R is a zero of

f(£) of multiplicity/» if

p i/n</ft(')i < oo   (/ = o,..., «)
•'-oo

and if

(df/dpim = o   (* - w - o» • • • >p -1)
but

{dp/di")r(i) ^ 0        (| = |0).

Assume that each zero of f(£) has finite multiplicity and let m (< oo) be the

supremum of the multiplicities of the zeros of f (£). Then an argument similar to the

proof of Lemma 5 of [7] shows that property MA(t) holds. Thus, if A(t) has no

finite accumulation point, if / is as in Theorem 2, and if g{t) is a solution of (2.2)

a.e. on R with g(0 G L°° (/ = 0, . . . , n - 1) and g(n_1) locally absolutely continu-

ous, then g has the form described in Theorem 2. We remark that the special case

of equation (2.2) with f^ the point-mass measure concentrated at t = 0, has been

considered previously in [8, Theorem 5] (see also [9, Theorem 5a]) when A(t) is

finite.
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