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ON BOUNDEDNESS OF INTEGRABLE

AUTOMORPHIC FORMS IN C

SU-SHING CHEN

Abstract. We give a necessary and sufficient condition for an integrable automor-

phic form on a bounded symmetric domain D in C to be bounded.

The question on the boundedness of integrable automorphic forms on the unit

disk in C1 has been investigated in [1], [5], [6], [7], [8], [9] and many other papers.

Integrable automorphic forms on the bounded homogeneous domains in C" have

been considered by Earle [2] and Selberg [10]. In this paper, we shall study the

boundedness of integrable automorphic forms on the bounded symmetric domains

inC".

Let D be a bounded symmetric domain in C" with Bergmen kernel function

k(z, w), where z and w represent «-tuples (z,, . . . , zn) and (wx, . . . , wn) respec-

tively.

For every holomorphic automorphism g of Aut(Z)), we have k(z, w) =

k(gz,gw)g'(z)g'(w), where g'(z) is the complex Jacobian of the automorphism g.

The volume element dm(z) = k(z, z)dz is invariant under the group Aut(Z)) of all

holomorphic automorphisms of D, where dz is the euclidean volume element of D.

Let r be a discrete subgroup of Aut(£>). We choose a fundamental domain R for

T so that 32? n D has zero volume. A function/holomorphic on D is said to be an

automorphic form of dimension -2q if f(yz)y'(z)q = f(z) for all z in D and y in T.

We denote by A (T) the space of integrable forms, i.e., the set of all holomorphic

automorphic forms/of dimension -2q such that

\\f\\q = f \f(z)\\k(z, z)\-q/2dm(z) < *o.

We denote by B (T) the space of bounded forms, i.e., the set of all forms of

dimension -2q such that

H/IL- sup|/(z)/;(z,z)-«/2|<a>.
ZED

We refer to the paper [2] of Earle for notations and basic facts. In particular, q is

any integer > 2 so that all formulas in [2] are valid. c(q) is a certain constant

depending only on q.

The following theorem is a generalization of a result of Metzger and Rao [7].

Received by the editors January 12, 1979.

AMS (MOS) subject classifications (1970). Primary 32N15.

Key words and phrases. Automorphic form, bounded symmetric domain.

© 1980 American Mathematical Society

0002-9939/80/0000-0111/$01.75

342



INTEGRABLE AUTOMORPHIC FORMS 343

Theorem. Let D be a bounded symmetric domain in C" and let V be a discrete

subgroup of Aut(D). For q > 2, Aq(T) c Bq(T) if and only if

sup \k(z, z)~qa(z, z)\ < oo, (**)
zeD

where a(z, w) = c(q)'ZyETk(yz, w)qy'(z)q.

Proof. According to Theorem 3.1, Corollary 5.2 and Theorem 7 of [2], the

function a(z, w), for a fixed w in D, belongs to Aq(T) and Bq(T).

If/is in Aq(T), then by [2], we have

/(") = c(q) [ f(z)k(w, z)"k(z, z)-« dm(z)
JD

= c{<l)\    2  f(yz)k(w,yz)qk(yz,yz)~q dm(z)

= c(q) f   2  f(yz)k(w, yz)qk(z, z)~qy'(z)qY(z) " dm(z)
JR 7er

= c(q)[    2   k(w,yz)q7(z)qf(z)k(z,z)-qdm(z)
JR yer

= c(q) Í f(z) a(z, w) k(z, z)~q dm(z).
JR

Consequently,

|/(w)| \k(w, w)'q/2\ < c(q)\\f\\q  sup   \a(z, w)\ \k(w, w)\~"/2\k(z, z)\~ql2.
z.weD

Since a(z, w) is in Aq(T) for a fixed w in D,

a(w, w) = c(q) I \a(z, w)\2k(z, z)~q dm(z)
J R

and

a(z, w) = c(q) I   a(w', w) a(w', z) k(w', w')~q dm(w').
JR

The Schwarz inequality implies  that  \a(z, w)\2 < \a(z, z)a(w, w)\.  Thus / is in

Bq(T).

Conversely, by the closed graph theorem, we have a bounded linear map from

Aq(T) into Bq(T). Thus, there exists a positive constant C such that for all / in Aq(T)

and z in D

\f(z)\\k(z,z)-q/2\<C\\f\\q.

For the function a( ■, w), and z, in D,

\a(z,w)\\k(z,z)-q/2\<C\\a(;w)\\q

and

\a(w, w)\ \k(w, w)-q/2\ <C\\a(-,w)\\q.
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But

ll«(-, *0||, < c(q) [    S  \k(yz, w)\q\y'(z)\q\k(z, z)~i/2| dm(z)
JR Yer

= c(?)rirc(z,»vriirv(z,z)-?/2i^(z)
JD

= c{q)/c(q/2)\k(w, w)q/2\

by a formula in [2]. Thus (**) is satisfied.
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