LIFTINGS OF FUNCTIONS WITH VALUES IN A COMPLETELY REGULAR SPACE

G. A. EDGAR¹ AND MICHEL TALAGRAND

ABSTRACT. Let T be a completely regular space, let $(\Omega, \mathcal{F}, \mu)$ be complete probability space, and let $\rho \colon \mathcal{C}^{\infty}(\mu) \to \mathcal{C}^{\infty}(\mu)$ be a lifting. If $f \colon \Omega \to T$ is a Baire measurable function, must there exist a function \tilde{f} with almost all of its values in T, such that $\rho(h \circ f) = h \circ \tilde{f}$ for all bounded continuous functions h on T? If T is strongly measure-compact, then the answer is "yes". If T is not measure-compact, then the answer is "no". This shows that a lifting is not always the best method for the construction of weak densities for vector measures.

Let T be a completely regular Hausdorff space, and let $C_b(T)$ be the set of bounded continuous real-valued functions on T. Thus T is homeomorphically embedded in $\mathbf{R}^{C_b(T)}$ (in the product topology) by the map $\Phi \colon T \to \mathbf{R}^{C_b(T)}$ defined by $\Phi(t)(h) = h(t), t \in T, h \in C_b(T)$. We will identify T with its image $\Phi[T]$. Any bounded continuous function on T extends to a bounded continuous function on $\mathbf{R}^{C_b(T)}$, so the Baire sets in T are the intersections of T with the Baire subsets of $\mathbf{R}^{C_b(T)}$.

Let $(\Omega, \mathcal{F}, \mu)$ be a complete probability space. A function $f: \Omega \to T$ is Baire measurable if and only if $h \circ f$ is measurable for all $h \in C_b(T)$. Let ρ be a lifting for $\mathcal{C}^{\infty}(\Omega, \mathcal{F}, \mu)$ (see [3, p. 34] for the definition). Define $\rho'(f): \Omega \to \mathbb{R}^{C_b(T)}$ by $\rho'(f)(\omega)(h) = \rho(h \circ f)(\omega)$, $\omega \in \Omega$, $h \in C_b(T)$. Then $\rho'(f)$ is Baire measurable (in fact Borel measurable [3, p. 52]), and for any $h \in C_b(\mathbb{R}^{C_b(T)})$, we have $h \circ \rho'(f) = h \circ f$ a.e. and $\rho(h \circ f) = h \circ \rho'(f)$ everywhere [3, §IV. 5].

Under what circumstances does the lifting $\rho'(f)$ of f have its values in $T \subseteq \mathbf{R}^{C_b(T)}$? A well-known sufficient condition is that $f[\Omega]$ be relatively compact in T [3, p. 52]. In fact, for nonatomic μ , if ρ varies over all liftings for $\mathcal{C}^{\infty}(\mu)$, then $\rho'(f)(\omega)$ varies over all values in the essential range $\{y \in \mathbf{R}^{C_b(T)}: \mu(f^{-1}(U)) > 0 \text{ for all neighborhoods } U \text{ of } y\}$, which is a compact subset of $\mathbf{R}^{C_b(T)}$. Thus, in order that $\rho'(f)[\Omega] \subseteq T$ for all liftings ρ , it is necessary and sufficient that the essential range of f be compact in f. This can be seen as follows. Let f0 belong to the essential range of f1, and choose f2 with f3 with f4 be a maximal filter of sets from f5 of positive measure that includes f5 be a not neighborhood of f6. Then any lifting f6 for f6 for f7 f8 with f9 remains a lifting when redefined at f9 as the limit along f9:

$$\rho(g)(\omega_0) = \lim_{\omega, \mathfrak{A}} g(\omega), \qquad g \in \mathfrak{L}^{\infty}(\mu).$$

Then $\rho'(f)(\omega_0) = y_0$.

Received by the editors August 23, 1978 and, in revised form, April 26, 1979.

AMS (MOS) subject classifications (1970). Primary 46G15.

¹Supported in part by National Science Foundation grant number MCS77-04049.

In this paper we are interested in a related question: Under what circumstances does $\rho'(f)$ have almost all of its values in T?

We will be considering three classes of measures on a completely regular space T. First $P_{\sigma}(T)$ denotes the set of probability measures on the σ -algebra of Baire sets in T. Second, $P_{\tau}(T)$ denotes the set of τ -smooth probability measures, i.e. measures $\lambda \in P_{\sigma}(T)$ such that $\int h_{\alpha} d\lambda \to 0$ for any net $h_{\alpha} \in C_b(T)$ which decreases pointwise to 0. Finally, $P_t(T)$ denotes the set of tight probability measures, i.e. measures $\lambda \in P_{\sigma}(T)$ such that, for every $\varepsilon > 0$, there is a compact $K \subseteq T$ with $\inf\{\lambda(B): B \supseteq K, B \text{ is a Baire set}\} > 1 - \varepsilon$. (These are the measures which extend to Radon measures on T.)

A completely regular space T is called *universally Radon measurable* iff $P_{\tau}(T) = P_{t}(T)$ (justification for this terminology can be found in [8] or in [4]). A space T is called *measure-compact* iff $P_{\sigma}(T) = P_{\tau}(T)$ [5]. A space T is called *strongly measure-compact* iff $P_{\sigma}(T) = P_{t}(T)$ [5], i.e. T is both universally Radon measurable and measure-compact. Examples of spaces T which do and do not have these properties can be found in [5].

THEOREM 1. Let T be a completely regular Hausdorff space. Then $(a') \Rightarrow (b) \Rightarrow (a'')$.

- (a') T is strongly measure-compact.
- (b) If $(\Omega, \mathfrak{F}, \mu)$ is a complete probability space, if ρ is a lifting for $\mathfrak{L}^{\infty}(\mu)$, and if $f: \Omega \to T$ is Baire measurable, then $\rho'(f)(\omega) \in T$ for almost all $\omega \in \Omega$.
 - (a") T is measure-compact.
- If T is universally Radon measurable, then the three conditions are equivalent.

With the same proof (but twice as many definitions) we can obtain a more general result.

Let T be a completely regular space, and let $H \subseteq C_b(T)$ be a set of functions which determines the topology in T, i.e. $\mathfrak{R}_H = \{h^{-1}(U): h \in H, U \subseteq \mathbf{R} \text{ is open}\}$ is a subbase for the topology. We will assume H is a uniformly closed algebra which contains the constants. (For example, if $T \subseteq S$ where S is completely regular, let H be the set of functions in $C_b(T)$ which have continuous extensions to S.) Then $\Phi: T \to \mathbf{R}^H$ defined by $\Phi(t)(h) = h(t)$ identifies T homeomorphically with a subset of \mathbf{R}^H . Let \mathfrak{B}_H be the σ -algebra generated by \mathfrak{R}_H , so that \mathfrak{B}_H consists of the sets $T \cap B$, where B is a Baire set in \mathbf{R}^H . In general, not every bounded continuous function on T can be extended to \mathbf{R}^H , and \mathfrak{B}_H may be strictly smaller than the σ -algebra of Baire sets of T.

Let $(\Omega, \mathcal{F}, \mu)$ be a complete probability space, and let ρ be a lifting for $\mathcal{E}^{\infty}(\mu)$. If $f: \Omega \to T$ is \mathfrak{B}_H -measurable, then $\rho'(f)(\omega)(h) = \rho(h \circ f)(\omega)$, $\omega \in \Omega$, $h \in H$, defines $\rho'(f): \Omega \to \mathbb{R}^H$.

Let λ be a probability measure on \mathfrak{B}_H . Then λ is called *tight* iff, for every $\varepsilon > 0$, there is a compact set $K \subseteq T$ such that $\inf\{\lambda(B)\colon B \in \mathfrak{B}_H, B \supseteq K\} > 1 - \varepsilon$; or, equivalently, iff λ extends to a Radon measure on T. Also, λ is called τ -smooth iff for any net $f_{\alpha} \in H$ which decreases to 0, we have $\lim_{H \to \infty} \int f_{\alpha} d\lambda = 0$. (Since H generates the topology of T, a measure λ on \mathfrak{B}_H is τ -smooth if and only if it extends to a τ -smooth measure on the Baire sets of T.)

THEOREM 2. Let T, H, \mathfrak{B}_H be as above. Then $(a') \Rightarrow (b) \Rightarrow (a'')$.

- (a') Every probability measure on \mathfrak{B}_H is tight.
- (b) If $(\Omega, \mathcal{F}, \mu)$ is a complete probability space, if ρ is a lifting for $\mathcal{L}^{\infty}(\mu)$, and if $f: \Omega \to T$ is \mathcal{B}_H -measurable, then $\rho'(f)(\omega) \in T$ for almost all $\omega \in \Omega$.
- (a") Every probability measure on \mathfrak{B}_H is τ -smooth. If T is universally Radon measurable, then the three conditions are equivalent.

PROOF. (a') \Rightarrow (b). Let $(\Omega, \mathcal{F}, \mu)$, ρ , and f be given. Let $\lambda = f(\mu)$ be the image measure, defined by $\lambda(B) = \mu(f^{-1}(B))$ for $B \in \mathcal{B}_H$, or by $\int h \, d\lambda = \int h \circ f \, d\mu$ for $h \in H$. By the assumption (a'), λ is tight. Let $\varepsilon > 0$ be given. There is a compact set $K \subseteq T$ so that $\lambda(B) \ge 1 - \varepsilon$ for every $B \in \mathcal{B}_H$ with $B \supseteq K$. Then

$$C = \bigcap \{ \rho(A) : A = f^{-1}(B), B \in \mathfrak{B}_H, B \supseteq K \}$$

is in \mathfrak{F} , $\mu(C) \geqslant 1 - \varepsilon$, and $\rho(C) \subseteq C$ [3, p. 40]. We claim that $\rho'(f)(\omega) \in K$ for all $\omega \in \rho(C)$. Indeed, suppose $y \in \mathbb{R}^H \setminus K$. Then there is a continuous function $g: \mathbb{R}^H \to [0, 1]$ with g(y) = 1 and g(t) = 0 for all $t \in K$. Now ([3, p. 52]; $f[\Omega]$ is relatively compact in \mathbb{R}^H) since $g \circ f = 0$ a.e. on C, $g \circ \rho'(f) = 0$ everywhere on $\rho(C)$. So, if $\omega \in \rho(C)$, we have $\rho'(f)(\omega) \neq y$. This shows $\rho'(f)[\rho(C)] \subseteq K \subseteq T$. Now $\mu(\rho(C)) \geqslant 1 - \varepsilon$, and ε was chosen arbitrarily, so $\rho'(f)(\omega) \in T$ for almost all $\omega \in \Omega$.

(b) \Rightarrow (a"). Let λ be a probability measure on \mathfrak{B}_H . Let $\Omega = T$, let $(\Omega, \mathfrak{F}, \mu)$ be the completion of $(T, \mathfrak{B}_H, \lambda)$ and let $f: \Omega \to T$ be the identity function. Suppose ρ is a lifting for $\mathcal{C}^{\infty}(\mu)$. By hypothesis (b), $\rho'(f)(\omega) \in T$ for almost all $\omega \in \Omega$. Let $h_{\alpha} \in H$ decrease pointwise to 0 on T. Let $h'_{\alpha} \in C_b(\mathbb{R}^H)$ be an extension of h_{α} . Then $h'_{\alpha} \circ \rho'(f)$ decreases to 0 a.e., and $\rho(h_{\alpha} \circ f) = h'_{\alpha} \circ \rho'(f)$, so $h'_{\alpha} \circ \rho'(f)$ decreases everywhere and

$$\lim \int h'_{\alpha} \circ \rho'(f) \ d\mu = \int \lim h'_{\alpha} \circ \rho'(f) \ d\mu = 0$$

[3, p. 40]. Thus

$$\lim \int h_{\alpha} d\lambda = \lim \int h_{\alpha} \circ f d\lambda$$

$$= \lim \int h_{\alpha} \circ f d\mu = \lim \int \rho(h_{\alpha} \circ f) d\mu = 0.$$

Therefore λ is τ -smooth.

Finally, if T is universally Radon measurable, we have $(a'') \Rightarrow (a')$. If λ is a probability measure on \mathfrak{B}_H , then by assumption (a''), λ is τ -smooth. But then λ extends to a τ -smooth Baire measure on T, which is tight since T is universally Radon measurable. Hence λ is tight. \square

Neither of the implications in Theorem 1 can be reversed in general, as the following two examples show.

EXAMPLE 3. $(a'') \neq (b)$. Write τ for the usual topology on [0, 1], and λ for Lebesgue measure on [0, 1]. By the well-ordering theorem [7, Theorem 5.3], there is a set $M \subseteq [0, 1]$ such that $F \cap M \neq \emptyset$ and $F \setminus M \neq \emptyset$ for all uncountable closed

sets F in [0, 1]. In particular, M has inner measure 0 and outer measure 1. Let $\Omega = M$, and let μ be the measure induced on Ω by λ , i.e. $\mu(\Omega \cap A) = \lambda(A)$ for any Lebesgue measurable set A.

The topological space T will be [0, 1] together with the toplogy τ' whose open sets are all sets of the form $G \cup P$, where G is τ -open and P is any subset of M. Equivalently, τ' is the topology determined by the set $\{\chi_{\{s\}}: s \in M\} \cup \{i\}$ of real-valued functions on T, where i is the identity function. A set $A \subseteq T$ is τ' -closed if and only if it can be written in the form $A = F \setminus P$, where F is τ -closed and $P \subseteq M$. In particular, if A is τ' -closed and $A \subseteq M$, then $A \subseteq F \subseteq M$ for some τ -closed set F which (being disjoint from $[0, 1] \setminus M$) must be countable.

Now consider a set A which is a τ' -(open F_{σ})-set. Since A is τ' -open, $A = G \cup P$, where G is τ -open and $P \subseteq M \setminus G$. Also, $A = \bigcup_{n=1}^{\infty} A_n$, where A_n is τ' -closed, so $A_n \cap P = A_n \setminus G$ is τ' -closed and contained in M, hence countable. Then $P = \bigcup_{n=1}^{\infty} (P \cap A_n)$ is countable.

Define $f: \Omega \to T$ by $f(\omega) = \omega$. If A is a τ' -(open F_{σ})-set, then $A = G \cup P$, where G is τ -open and P is countable, so A is Lebesgue measurable, and hence $f^{-1}(A) = \Omega \cap A$ is μ -measurable. This shows that f is a Baire measurable function from Ω to T. Suppose (for purposes of contradiction) that $\rho'(f)(\omega) \in T$ for almost all $\omega \in \Omega$. Now for $\omega \in \Omega$, the function $\chi_{\{\omega\}}$ is a continuous function on T, and $\chi_{\{\omega\}} \circ f = 0$ a.e., so $\chi_{\{\omega\}} \circ \rho'(f) = 0$ everywhere, so $\rho'(f)(\omega) \neq \omega$. On the other hand, the identity function $i: T \to \mathbb{R}$ is continuous on T, so $i \circ f = i \circ \rho'(f)$ a.e., that is, $\rho'(f)(\omega) = \omega$ for almost all $\omega \in \Omega$. This contradiction shows that $\rho'(f)(\omega)$ is not in T for almost all ω .

Finally, we claim that T is measure-compact. It suffices to show that T is Lindelof [9, p. 175]. Let $\{A_i : i \in I\}$ be a cover of [0, 1] by τ' -open sets. Write $A_i = G_i \cup P_i$, where G_i is τ -open and $P_i \subseteq M$. Let $G = \bigcup_{i \in I} G_i$. There is a countable set $I_1 \subseteq I$ with $G = \bigcup_{i \in I_1} G_i$, since (G, τ) is separable and metrizable. Now $[0, 1] \setminus G = (\bigcup_{i \in I} A_i) \setminus G \subseteq \bigcup_{i \in I} P_i \subseteq M$, and $[0, 1] \setminus G$ is τ -closed, so it is countable. Thus, there is a countable set $I_2 \subseteq I$ such that $[0, 1] \setminus G \subseteq \bigcup_{i \in I_2} P_i$. Thus $\{A_i : i \in I_1 \cup I_2\}$ is a countable subcover of [0, 1]. This shows that (T, τ') is Lindelof.

EXAMPLE 4. (b) \Rightarrow (a). Let M, μ be as in Example 3. Let T be M with the usual topology (τ) . Then μ is a Baire measure on T which is not tight. This shows that T is not strongly measure-compact. But if $(\Omega, \mathfrak{F}, \lambda)$ is any complete probability space, ρ is a lifting for $\mathcal{C}^{\infty}(\lambda)$, and $f \colon \Omega \to T$ is Baire measurable, then (since the inclusion map $T \to \mathbf{R}$ is continuous and bounded) $\rho'(f) = f$ a.e., so $\rho'(f)(\omega) \in T$ for almost all $\omega \in \Omega$.

The work in this paper started from the following question of A. Goldman: Is lifting the best way to construct weak densities for vector measures? (See [2].) The methods used in Theorem 2 will also prove the following.

THEOREM 5. Let $(\Omega, \mathcal{F}, \mu)$ be a complete probability space, let E be a locally convex space, let $\mathbf{m}: \mathcal{F} \to E$ be a vector measure with bounded μ -average range, and let λ be the associated cylindrical measure. Then $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d)$.

(a) λ is (the restriction of) a Radon measure.

- (b) Every lifting gives a density for m.
- (c) There is a lifting which gives a density for **m**.
- (d) λ is τ -smooth.

Our last example illustrates a situation where weak densities exist, but cannot be obtained from liftings.

EXAMPLE 6. Suppose E is a Banach space with the following three properties. (a) Every vector measure with bounded average range in E has a weak density. (b) Every bounded scalarly measurable function with values in E is Pettis integrable. (c) There is a bounded scalarly measurable function f with values in E which is not weakly equivalent to a Bochner measurable function. Then, if \mathbf{m} is the indefinite Pettis integral of f, defined by $\mathbf{m}(A) = \int_A f d\mu$, the associated cylindrical measure $\lambda = f(\mu)$ is not τ -smooth [1, p. 672], so $\rho'(f)(\omega)$ is not in E for almost all ω . In such a space E, every measure with bounded average range has a weak density, but such densities cannot always be obtained by liftings in the weak topology of E.

Examples of spaces satisfying the properties (a), (b), (c) include a nonseparable dual of a separable Banach space which does not have a subspace isomorphic to l^1 , such as the dual of the James Tree space [6, Theorem 3].

REFERENCES

- 1. G. A. Edgar, Measurability in a Banach space, Indiana Univ. Math. J. 26 (1977), 663-677.
- 2. A. Goldman, Mesures cylindriques, mesures vectorielles et questions de concentration cylindrique, Pacific J. Math. 69 (1977), 385-413.
- 3. A. Ionescu Tulcea and C. Ionescu Tulcea, *Topics in the theory of liftings*, Ergebnisse der Mathematik und Ihrer Grenzgebiete, vol. 48, Springer-Verlag, Berlin and New York, 1969.
- 4. J. D. Knowles, Measures on topological spaces, Proc. London Math. Soc. 17 (1967), 139-156.
- 5. W. Moran, Measures and mappings on topological spaces, Proc. London Math. Soc. 19 (1969), 493-508.
 - 6. K. Musial, The weak Radon-Nikodym property in Banach spaces, Studia Math. 64 (1979), 151-173.
- 7. J. C. Oxtoby, Measure and category, Graduate Texts in Mathematics, vol. 2, Springer-Verlag, Berlin and New York, 1971.
- 8. C. Sunyach, Une caractérisation des espaces universellement Radon-measurables, C. R. Acad. Sci. Paris Sér. A-B 268 (1969), 864-866.
 - 9. V. S. Varadarajan, Measures on topological spaces, Amer. Math. Soc. Transl. (2) 48 (1965), 161-228.

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, COLUMBUS, OHIO 43210

ÉQUIPE D'ANALYSE, UNIVERSITÉ PARIS VI, 75230 PARIS CEDEX 05, FRANCE