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LIFTINGS OF FUNCTIONS WTTH VALUES IN

A COMPLETELY REGULAR SPACE

G. A. EDGAR1 AND MICHEL TALAGRAND

Abstract. Let T be a completely regular space, let (Q, §, ji) be complete probabil-

ity space, and let p : ß°° ( /i) -» £°° ( n) be a lifting. If /: Q -> T is a Baire measurable

function, must there exist a function / with almost all of its values in T, such that

p(A ° /) = h o / for all bounded continuous functions h on T1 If T is strongly

measure-compact, then the answer is "yes". If T is not measure-compact, then the

answer is "no". This shows that a lifting is not always the best method for the

construction of weak densities for vector measures.

Let T be a completely regular Hausdorff space, and let Cb(T) be the set of

bounded continuous real-valued functions on T. Thus T is homeomorphically

embedded in Rc»(r) (in the product topology) by the map 3>: 71-» Rc»(r) defined by

$(f)(A) = A(0, t G T, A G Cb(T). We will identify T with its image $[T]. Any

bounded continuous function on T extends to a bounded continuous function on

Rc»(r), so the Baire sets in T are the intersections of T with the Baire subsets of

Let (ß, ÍF, ft) be a complete probability space. A function /: ß -> T is Baire

measurable if and only if A ° / is measurable for all A G Cb(T). Let p be a lifting

for £°°(ß, 3F, ft) (see [3, p. 34] for the definition). Define p'(/): B->Rc»(r) by

p'(/)(w)(A) = p(A °/)(«), w G ß, A G Cb{T). Then p'(/) is Baire measurable (in

fact Borel measurable [3, p. 52]), and for any A G C6(RCí,(r)), we have A ° p'(/) =

A » / a.e. and p(A ° f) = h ° p'(f) everywhere [3, §1V. 5].

Under what circumstances does the lifting p'(f) of / have its values in T C

Rc»(r)? A well-known sufficient condition is that/[ß] be relatively compact in T [3,

p. 52]. In fact, for nonatomic ft, if p varies over all liftings for £°°(ft), then p'(/)(co)

varies over all values in the essential range {y G Rc»(r): ft(/~'(£/)) > 0 for all

neighborhoods U of v}, which is a compact subset of Rc»(r). Thus, in order that

p'(/)[ß] Q T for all liftings p, it is necessary and sufficient that the essential range

of / be compact in T. This can be seen as follows. Let v0 belong to the essential

range of/, and choose w0 G ß with ft({co0}) = 0. Let 'il be a maximal filter of sets

from <F of positive measure that includes {f~l(U): U is an open neighborhood of

v0}. Then any lifting p for £°°(fi) remains a lifting when redefined at u0 as the limit

along % :

p(g)(co0) = lim g(w),       gG£°°(ft).

Then p'(/)(io0) = >V
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In this paper we are interested in a related question: Under what circumstances

does p'(f) have almost all of its values in J?

We will be considering three classes of measures on a completely regular space

T. First Pa( T) denotes the set of probability measures on the a-algebra of Baire sets

in T. Second, Pr(T) denotes the set of t-smooth probability measures, i.e. measures

X G P„(T) such that / ha dX -> 0 for any net ha G Cb(T) which decreases pointwise

to 0. Finally, P,(T) denotes the set of tight probability measures, i.e. measures

A G Pa(T) such that, for every e > 0, there is a compact K G T with inf(X(B):

B D K, B is a Baire set} > 1 — e. (These are the measures which extend to Radon

measures on T.)

A completely regular space T is called universally Radon measurable iff PT(T) =

P,(T) (justification for this terminology can be found in [8] or in [4]). A space T is

called measure-compact iff P„(T) = PT(T) [5]. A space T is called strongly

measure-compact iff Pa(T) = P,(T) [5], i.e. T is both universally Radon measurable

and measure-compact. Examples of spaces T which do and do not have these

properties can be found in [5].

Theorem 1. Let T be a completely regular Hausdorff space. Then (a') =» (b) =>

(a").

(a') T is strongly measure-compact.

(b) 2/(ß, '$, n) is a complete probability space, if p is a lifting for £°°(/i), and if f:

ß —» T is Baire measurable, then p'(/)(w) G T for almost all co G ß.

(a") T is measure-compact.

If T is universally Radon measurable, then the three conditions are equivalent.

With the same proof (but twice as many definitions) we can obtain a more

general result.

Let T be a completely regular space, and let H G Cb(T) be a set of functions

which determines the topology in T, i.e. <3lw = {h~x(U): h G H, U G R is open}

is a subbase for the topology. We will assume H is a uniformly closed algebra

which contains the constants. (For example, if T G S where S is completely

regular, let H be the set of functions in Cb( T) which have continuous extensions to

S.) Then $: T ^> RH defined by ®(t)(h) = h(t) identifies T homeomorphically with

a subset of RH. Let ®# be the a-algebra generated by ^kH, so that 9>H consists of

the sets T n B, where B is a Baire set in R". In general, not every bounded

continuous function on T can be extended to R", and %H may be strictly smaller

than the a-algebra of Baire sets of T.

Let (ß, f, ft) be a complete probability space, and let p be a lifting for £°°(ju). If

/: ß -» T is $„ -measurable, then p'(f)((ú)(h) = p(h °/)(u), w G ß, h G H, defines

p'(/):ß^R".
Let X be a probability measure on %H. Then X is called tight iff, for every e > 0,

there is a compact set K G T such that inf{\(5): B G %H, B D K) > 1 - e; or,

equivalently, iff X extends to a Radon measure on T. Also, X is called r-smooth iff

for any net fa G H which decreases to 0, we have lim / fadX = 0. (Since H

generates the topology of T, a measure A on 'S H is r-smooth if and only if it

extends to a r-smooth measure on the Baire sets of T.)
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Theorem 2. Let T, H, %H be as above. Then (a') => (b) => (a").

(a') Every probability measure on%H is tight.

(b) Z/(ß, <3r, ft) is a complete probability space, if p is a lifting for £°°(ft), antZ ///:

ß -» T is Ç&ff-measurable, then p'(/)(to) G T/or almost all to G ß.

(a") £üt?/j' probability measure on %H is T-smooth.

If T is universally Radon measurable, then the three conditions are equivalent.

Proof, (a') => (b). Let (ß, Sr, ft), p, and / be given. Let X = /( ft) be the image

measure, defined by X(B) = fi(f~\B)) for B G %H, or by / A <tt = / A °/tZfi for

A G ZZ. By the assumption (a'), X is tight. Let e > 0 be given. There is a compact

set Zi Ç r so that \(5) > 1 - e for every 5 G %H with 5 D ZC. Then

C = n {p(A): A = /"'(£), 5 G <&H, B D #}

is in $, ft(C) > 1 - e, and p(C) Ç C [3, p. 40]. We claim that p'(/)(co) G K for all

to G p(C). Indeed, suppose y G R^xA'. Then there is a continuous function g:

R" -* [0, 1] with g(y) = 1 and g(i) = 0 for all t G K. Now ([3, p. 52]; /[ß] is

relatively compact in RH) since g ° / = 0 a.e. on C, g ° p'(/) = 0 everywhere on

p(C). So, if w G p(C), we have p'(/)(w) ¥>y. This shows p'(/)[p(C)] Çiçr.

Now ft(p(C)) > 1 — e, and e was chosen arbitrarily, so p'(/)(to) G T for almost all

to G ß.

(b) => (a"). Let A be a probability measure on %H. Let ß = T, let (ß, Sr, ft) be

the completion of (T, %H, X) and let/: ß ^ T be the identity function. Suppose p

is a lifting for £°°(ft). By hypothesis (b), p'(/)(to) G T for almost all to G ß. Let

A„ G ZZ decrease pointwise to 0 on T. Let A¿ G Q(R") be an extension of ha. Then

K ° p'(f) decreases to 0 a.e., and p(Aa ° /) = h'a ° p'(/), so h'a ° p'(/) decreases

everywhere and

lim f h'a o p'(f) dii= f lim A; o p'(/) d¡l = o

[3, p. 40]. Thus

lim  f hadX = lim f ha of dX

= lim j ha ° fdn = lim j p(ha ° /) cZft = 0.

Therefore X is T-smooth.

Finally, if T is universally Radon measurable, we have (a") => (a')- If A is a

probability measure on <§>H, then by assumption (a"), X is T-smooth. But then a

extends to a T-smooth Baire measure on T, which is tight since T is universally

Radon measurable. Hence X is tight.    □

Neither of the implications in Theorem 1 can be reversed in general, as the

following two examples show. •

Example 3. (a") ^> (b). Write t for the usual topology on [0, 1], and X for

Lebesgue measure on [0, 1]. By the well-ordering theorem [7, Theorem 5.3], there is

a set M C [0, 1] such that F n M ^ 0 and F\M i= 0 for all uncountable closed
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sets F in [0, 1]. In particular, M has inner measure 0 and outer measure 1. Let

ß = M, and let ¡i be the measure induced on ß by X, i.e. /i(ß n A) = X(A) for any

Lebesgue measurable set A.

The topological space T will be [0, 1] together with the toplogy t' whose open

sets are all sets of the form G u P, where G is r-open and P is any subset of M.

Equivalently, r' is the topology determined by the set {X[Sy ■? G A/} u {/} of

real-valued functions on T, where i is the identity function. A set A G T is

r'-closed if and only if it can be written in the form A = F\P, where F is r-closed

and P G M. In particular, if A is r'-closed and A G M, then A G F G M for some

T-closed set F which (being disjoint from [0, 1]\A/) must be countable.

Now consider a set A which is a r'-(open Fa)-set. Since A is T'-open, A = G u P,

where G is r-open and P G M\G. Also, A = U "_, An, where An is r'-closed, so

An n P = An\G is T'-closed and contained in M, hence countable. Then P =

Uñ-\(p n An) is countable.

Define /: ß —> T by /(co) = to. If A is a r'-(open F0)-set, then A = G u P, where

G is T-open and P is countable, so A is Lebesgue measurable, and hence/- X(A) =

ß n A is ju-measurable. This shows that / is a Baire measurable function from ß to

T. Suppose (for purposes of contradiction) that p'(f)(cci) G T for almost all co G ß.

Now for co G ß, the function X{u) is a continuous function on T, and X{„} ° / = 0

a.e., so X{U) ° P'(f) = 0 everywhere, so p'(/)(co) ^ co. On the other hand, the

identity function /': T-*R is continuous on T, so i ° f = i ° p'(f) a.e., that is,

p'(/)(co) = co for almost all co G ß. This contradiction shows that p'(/)(co) is not in T

for almost all co.

Finally, we claim that T is measure-compact. It suffices to show that T is

Lindelof [9, p. 175]. Let {A¡: i G 1} be a cover of [0, 1] by r'-open sets. Write

A¡ = G¡ u P„ where G¡ is T-open and P¡ G M. Let G = (J ,e/ G¡. There is a

countable set 2, G I with G = U ,<=/ G¡, since (G, t) is separable and metrizable.

Now [0, 1]\G = (U,e/ A)xG £ U ie/ 2», Ç M, and [0, 1]\G is T-closed, so it is

countable. Thus, there is a countable set 22 G I such that [0, l]\G G U ,<=/ P¡-

Thus {/í,-: í G 2, u 22} is a countable subcover of [0, 1]. This shows that (T, t') is

Lindelof.

Example 4. (b) ^ (a). Let M, ¡i be as in Example 3. Let T be M with the usual

topology (t). Then ju is a Baire measure on T which is not tight. This shows that T

is not strongly measure-compact. But if (ß, "Ï, X) is any complete probability space,

p is a lifting for £°°(a), and/: ß —> T is Baire measurable, then (since the inclusion

map T -» R is continuous and bounded) p'(f) = f a.e., so p'(/)(co) G T for almost

all co G ß.

The work in this paper started from the following question of A. Goldman: Is

lifting the best way to construct weak densities for vector measures? (See [2].) The

methods, used in Theorem 2 will also prove the following.

Theorem 5. Let (ß, ÇF, ju.) be a complete probability space, let E be a locally convex

space, let m: Ç ^> E be a vector measure with bounded li-average range, and let X be

the associated cylindrical measure. Then (a) => (b) => (c) => (d).

(a) X is (the restriction of) a Radon measure.



LIFTINGS OF FUNCTIONS 349

(b) Every lifting gives a density for m.

(c) There is a lifting which gives a density for m.

(d) X is T-smooth.

Our last example illustrates a situation where weak densities exist, but cannot be

obtained from liftings.

Example 6. Suppose E is a Banach space with the following three properties, (a)

Every vector measure with bounded average range in E has a weak density, (b)

Every bounded scalarly measurable function with values in E is Pettis integrable,

(c) There is a bounded scalarly measurable function / with values in E which is not

weakly equivalent to a Bochner measurable function. Then, if m is the indefinite

Pettis integral of/, defined by m(A) = fA f du, the associated cylindrical measure

X = /(ft) is not T-smooth [1, p. 672], so p'(/)(to) is not in E for almost all to. In such

a space E, every measure with bounded average range has a weak density, but such

densities cannot always be obtained by liftings in the weak topology of E.

Examples of spaces satisfying the properties (a), (b), (c) include a nonseparable

dual of a separable Banach space which does not have a subspace isomorphic to /',

such as the dual of the James Tree space [6, Theorem 3].
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