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LIFTINGS OF FUNCTIONS WITH VALUES IN
A COMPLETELY REGULAR SPACE

G. A. EDGAR' AND MICHEL TALAGRAND

ABSTRACT. Let T be a completely regular space, let (2, ¥, 1) be complete probabil-
ity space, and let p: £°(p) — £%(p) be a lifting. If f: @ — T is a Baire measurable
function, must there exist a function f with almost all of its values in T, such that
p(h o f) = h o f for all bounded continuous functions 4 on T? If T is strongly
measure-compact, then the answer is “yes”. If T is not measure-compact, then the
answer is “no”. This shows that a lifting is not always the best method for the
construction of weak densities for vector measures.

Let T be a completely regular Hausdorff space, and let C,(T) be the set of
bounded continuous real-valued functions on 7. Thus T is homeomorphically
embedded in R%" (in the product topology) by the map ®: T — R%™ defined by
®(t)(h) = h(t), t € T, h € C(T). We will identify T with its image ®[T]. Any
bounded continuous function on T extends to a bounded continuous function on
RS, 5o the Baire sets in T are the intersections of T with the Baire subsets of
R&(D,

Let (2, %, u) be a complete probability space. A function f: @ — T is Baire
measurable if and only if 4 ° f is measurable for all 1 € C,(T). Let p be a lifting
for (2, %, u) (see [3, p. 34] for the definition). Define p'(f): @ — R by
P’ (N w)h) = p(h ° f)w), w €Q, h € C,(T). Then p'(f) is Baire measurable (in
fact Borel measurable [3, p. 52]), and for any & € C,(R%7), we have h  p'(f) =
h o fae.and p(h o f) = h o p'(f) everywhere [3, §IV. 5].

Under what circumstances does the lifting p’(f) of f have its values in T C
R%M7 A well-known sufficient condition is that f[2] be relatively compact in T [3,
p. 52]. In fact, for nonatomic p, if p varies over all liftings for £°( ), then p’(f)(w)
varies over all values in the essential range {y € R%™: u(f~Y(U)) > 0 for all
neighborhoods U of y}, which is a compact subset of R, Thus, in order that
p’(N)I2] C T for all liftings p, it is necessary and sufficient that the essential range
of f be compact in T. This can be seen as follows. Let y, belong to the essential
range of f, and choose w, € Q with u({w,}) = 0. Let A be a maximal filter of sets
from ¥ of positive measure that includes { f ~'(U): U is an open neighborhood of
Yo} Then any lifting p for £°( p) remains a lifting when redefined at w, as the limit
along U :

p(8)(wo) = lim g(w), g € £%(p).

Then p'(f)(wo) = Yo
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In this paper we are interested in a related question: Under what circumstances
does p’(f) have almost all of its values in T'?

We will be considering three classes of measures on a completely regular space
T. First P,(T) denotes the set of probability measures on the o-algebra of Baire sets
in T. Second, P,(T) denotes the set of 7-smooth probability measures, i.e. measures
A € P(T) such that [ h, dA\ — O for any net h, € C,(T) which decreases pointwise
to 0. Finally, P,(T) denotes the set of tight probability measures, i.e. measures
A € P(T) such that, for every € > 0, there is a compact K C T with inf{A(B):
B D K, B is a Baire set} > 1 — ¢. (These are the measures which extend to Radon
measures on 7.)

A completely regular space T is called universally Radon measurable iff P,(T) =
P(T) (justification for this terminology can be found in [8] or in [4]). A space T is
called measure-compact iff P(T)= P(T) [5]. A space T is called strongly
measure-compact iff P,(T) = P(T)[S], i.e. T is both universally Radon measurable
and measure-compact. Examples of spaces T which do and do not have these
properties can be found in [5).

THEOREM 1. Let T be a completely regular Hausdorff space. Then (a’) = (b) =
@").

(@’) T is strongly measure-compact.

) If (2, F, ) is a complete probability space, if p is a lifting for £°(w), and if f:
Q — T is Baire measurable, then p'(f)(w) € T for almost all w € Q.

(@") T is measure-compact.
If T is universally Radon measurable, then the three conditions are equivalent.

With the same proof (but twice as many definitions) we can obtain a more
general result.

Let T be a completely regular space, and let H C C,(T) be a set of functions
which determines the topology in T, i.e. R, = {h~'(U): h € H, U C R is open}
is a subbase for the topology. We will assume H is a uniformly closed algebra
which contains the constants. (For example, if 7 C S where S is completely
regular, let H be the set of functions in C,(7T") which have continuous extensions to
S.) Then ®: T — R defined by ®(f)(h) = h(z) identifies T homeomorphically with
a subset of R”. Let B, be the o-algebra generated by R, so that B, consists of
the sets T N B, where B is a Baire set in R, In general, not every bounded
continuous function on T can be extended to R¥, and ®,, may be strictly smaller
than the o-algebra of Baire sets of 7.

Let (2, %, p) be a complete probability space, and let p be a lifting for £*°(p). If
f: @ T is B, -measurable, then p’'()w)(h) = p(h ° f)(w), w € Q, h € H, defines
p'(f): 2 >RHE,

Let A be a probability measure on B . Then A is called right iff, for every e > 0,
there is a compact set K C T such that inf(A(B): BE€ B,, BD K} > 1 — ¢; or,
equivalently, iff A extends to a Radon measure on T. Also, A is called 7-smooth iff
for any net f, € H which decreases to 0, we have lim [ f, dA = 0. (Since H
generates the topology of 7, a measure A on %, is 7-smooth if and only if it
extends to a T-smooth measure on the Baire sets of T.)
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THEOREM 2. Let T, H, B, be as above. Then (a’) = (b) = (a”).

(a’) Every probability measure on B, is tight.

(b) If (2, F, p) is a complete probability space, if p is a lifting for € (p), and if f:
Q — T is B -measurable, then p'(f)(w) € T for almost all w € Q.

(a”) Every probability measure on B, is t-smooth.
If T is universally Radon measurable, then the three conditions are equivalent.

PROOF. (a') = (b). Let (2, %, p), p, and f be given. Let A = f(u) be the image
measure, defined by A(B) = u(f~'(B)) for B € B, orby [ hd\ = [ h o fdu for
h € H. By the assumption (a), A is tight. Let ¢ > O be given. There is a compact
set K C T so that A(B) > 1 — ¢ for every B € B, with B D K. Then

C=N{p(4):4=f""(B),BE By,B2 K}

isin %, p(C) > 1 — ¢ and p(C) C C [3, p. 40]. We claim that p’(f)(w) € K for all
w € p(C). Indeed, suppose y € RY\K. Then there is a continuous function g:
R# 5[0, 1] with g(y) =1 and g(¢) = 0 for all t € K. Now ([3, p. 52); fIQ] is
relatively compact in R¥) since g o f =0 a.e. on C, g ° p'(f) = 0 everywhere on
p(C). So, if w € p(C), we have p’'(f)(w) #y. This shows p'(Np(C))Cc K C T.
Now u(p(C)) > 1 — &, and & was chosen arbitrarily, so p'(f)(w) € T for almost all
w E Q.

(b) = (a”). Let A be a probability measure on B,. Let @ = T, let (2, F, u) be
the completion of (T, B, A) and let f: @ — T be the identity function. Suppose p
is a lifting for £°( ). By hypothesis (b), p'(f)(w) € T for almost all w € Q. Let
h, € H decrease pointwise to 0 on 7. Let b, € C,(R¥) be an extension of A,. Then
h;  p'(f) decreases to 0 a.e., and p(h, ° f) = h, ° p'(f), so h o p'(f) decreases
everywhere and

lim [ K, o p(f)dp = [ tim B © p(f) du = 0
[3, p. 40]. Thus
lim f h, dA = lim f h, o f dA

=limfha°fdp.=limfp(ha°f)dp=0.

Therefore A is T-smooth.

Finally, if T is universally Radon measurable, we have (a”")=(a’). If A is a
probability measure on %, then by assumption (a”), A is 7-smooth. But then A
extends to a 7-smooth Baire measure on T, which is tight since T is universally
Radon measurable. Hence A is tight. [J

Neither of the implications in Theorem 1 can be reversed in general, as the
following two examples show. "

EXAMPLE 3. (a”) % (b). Write 7 for the usual topology on [0, 1}, and A for
Lebesgue measure on [0, 1]. By the well-ordering theorem [7, Theorem 5.3], there is
aset M C [0, 1] such that F 0N M % & and F\M # & for all uncountable closed
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sets F in [0, 1]. In particular, M has inner measure 0 and outer measure 1. Let
Q = M, and let p be the measure induced on @ by A, i.e. u( N 4) = A(A4) for any
Lebesgue measurable set 4.

The topological space T will be [0, 1] together with the toplogy v whose open
sets are all sets of the form G U P, where G is T-open and P is any subset of M.
Equivalently, 7* is the topology determined by the set {x(,: s € M} U {i} of
real-valued functions on 7, where i is the identity function. A set A C T is
7’-closed if and only if it can be written in the form 4 = F\ P, where F is 7-closed
and P C M. In particular, if 4 is 7'-closed and A C M, then 4 C F C M for some
7-closed set F which (being disjoint from [0, 1]\ M) must be countable.

Now consider a set 4 which is a 7-(open F,)-set. Since 4 is 7-open, A = G U P,
where G is 7-open and P C M\G. Also, 4 = U ., A,, where 4, is 7'-closed, so
A, N P=A)G is 7closed and contained in M, hence countable. Then P =
Un=1(P N 4,) is countable.

Define f: @ - T by f(w) = w. If 4 is a 7"-(open F,)-set, then 4 = G U P, where
G is r-open and P is countable, so 4 is Lebesgue measurable, and hence f~!(4) =
N A is p-measurable. This shows that f is a Baire measurable function from £ to
T. Suppose (for purposes of contradiction) that p’(f)(w) € T for almost all w € Q.
Now for w € @, the function x,, is a continuous function on T, and x(,; > f =0
a.e., SO X, ° P(f) =0 everywhere, so p'(f)(w) # w. On the other hand, the
identity function i: T — R is continuous on T, so i o f = i o p'(f) a.e., that is,
P’ ()w) = w for almost all w € . This contradiction shows that p’(f)(w) is not in T
for almost all .

Finally, we claim that T is measure-compact. It suffices to show that T is
Lindelof [9, p. 175). Let {4;: i € I} be a cover of [0, 1] by 7’-open sets. Write
A; = G; U P, where G, is T-open and P, C M. Let G = U ;,; G;.. There is a
countable set /;, C I with G = U ,¢,, G, since (G, 7) is separable and metrizable.
Now [0, ING = (U ;c; ANG C U ¢, P, C M, and [0, 1]\G is 7-closed, so it is
countable. Thus, there is a countable set I, C I such that [0, ING C U ;¢, P
Thus {A;: i € I, U I,} is a countable subcover of [0, 1]. This shows that (7, 7’) is
Lindelof.

ExAMPLE 4. (b) 55 (a). Let M, p be as in Example 3. Let T be M with the usual
topology (7). Then p is a Baire measure on T which is not tight. This shows that T
is not strongly measure-compact. But if (R, &, A) is any complete probability space,
p is a lifting for £*°(A), and f: @ — T is Baire measurable, then (since the inclusion
map T — R is continuous and bounded) p'(f) = f a.e., so p'(f)(w) € T for almost
allw € Q.

The work in this paper started from the following question of A. Goldman: Is
lifting the best way to construct weak densities for vector measures? (See [2].) The
methods, used in Theorem 2 will also prove the following.

THEOREM 5. Let (R, 9, ) be a complete probability space, let E be a locally convex
space, let m: & — E be a vector measure with bounded p-average range, and let \ be
the associated cylindrical measure. Then (a) = (b) = (c) = (d).

() A is (the restriction of) a Radon measure.
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(b) Every lifting gives a density for m.
(c) There is a lifting which gives a density for m.
(d) A is T-smooth.

Our last example illustrates a situation where weak densities exist, but cannot be
obtained from liftings.

ExAMPLE 6. Suppose E is a Banach space with the following three properties. (a)
Every vector measure with bounded average range in E has a weak density. (b)
Every bounded scalarly measurable function with values in E is Pettis integrable.
(c) There is a bounded scalarly measurable function f with values in E which is not
weakly equivalent to a Bochner measurable function. Then, if m is the indefinite
Pettis integral of f, defined by m(4) = [, f du, the associated cylindrical measure
A = f(p) is not r-smooth [1, p. 672], so p’(f)(w) is not in E for almost all w. In such
a space E, every measure with bounded average range has a weak density, but such
densities cannot always be obtained by liftings in the weak topology of E.

Examples of spaces satisfying the properties (a), (b), (c) include a nonseparable
dual of a separable Banach space which does not have a subspace isomorphic to /!,
such as the dual of the James Tree space [6, Theorem 3].
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