PERIODIC SOLUTIONS FOR A CLASS OF ORDINARY DIFFERENTIAL EQUATIONS

JAMES R. WARD, JR.

ABSTRACT. A T-periodic solution to the differential equation $x'' + cx' + g(x) = f(t) \equiv f(t + T)$ is shown to exist whenever a simple condition on g holds, provided $c \neq 0$. No assumption is made concerning the growth of g. The condition on g is necessary if g is either an increasing or a decreasing function.

In this note we discuss existence of T-periodic solutions for the differential equation

$$x'' + cx' + g(x) = f(t) \equiv f(t + T).$$
 (1.1)

We assume that $g: R \to R$ is continuous, $f: R \to R$ is continuous and T-periodic, and $c \in R$. Here R denotes the real numbers and T > 0.

Let $m = T^{-1} \int_0^T f(t) dt$. We prove the following theorem.

THEOREM 1. Suppose the following conditions are satisfied:

- (i) There is a number $r \ge 0$ such that $(g(x) m)x \ge 0$ (≤ 0) whenever $|x| \ge r$; (ii) $c \ne 0$.
- Then there is at least one T-periodic solution of (1.1).

Theorem 1 extends a result due to A. C. Lazer [2]. Lazer showed that under condition (i) there is a T-periodic solution for any $c \in R$ provided g is sublinear; that is, provided $g(x)/x \to 0$ as $|x| \to +\infty$. Thus, we show that if $c \neq 0$ sublinearity is not needed. More recently, under the hypothesis that c = 0, Fucik and Lovicar [1] showed that there is a T-periodic solution for any T-periodic forcing function f, provided $g(x)/x \to +\infty$ as $|x| \to +\infty$, thus solving an old problem. Theorem 1 includes an extension of the result of [1] to the case $c \neq 0$. We emphasize that we need no growth condition on g. Our proof is based on a simple Leray-Schauder argument.

In what follows we let $S = L^2(0, T)$ with norm $\|\cdot\|$ given by $\|u\|^2 = \int_0^T u^2 dt$ for $u \in S$. Let AC be the functions absolutely continuous on [0, T]. By H^1 we will mean the space of functions $u \in AC$ with $u' \in S$ ($' \equiv d/dt$), with norm $|u|_1$ given by

$$|u|_1 = \max_{0 \le t \le T} |u(t)| + ||u'||.$$

It is well known that H^1 is a Banach space.

Received by the editors May 10, 1979.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 34C15, 34C25.

Key words and phrases. Nonlinear ordinary differential equations, periodic solutions.

PROOF OF THEOREM 1. There is no loss of generality in supposing m = 0, and we will so assume. We consider the case (g(x) - m)x > 0 if |x| > r. The proof in the other case is essentially the same.

Let $L: D(L) \subset H^1 \to S$ be defined as follows:

$$D(L) = \{u \in H^1: u' \in AC, u'' \in S, u(0) = u(T), u'(0) = u'(T)\},\$$

Lu = u'' for $u \in D(L)$.

Choose b > 0 with $b \neq 4n^2\pi^2/T^2$ for any integer n. Then $(L + bI)^{-1}$ exists and maps S into H^1 compactly. There is a T-periodic solution x of (1.1) if and only if the restriction of x to [0, T] is a solution to

$$x = (L + bI)^{-1}(f + bx - g(x) - cx').$$
 (1.2)

The mapping $x \to Nx \equiv f + bx - g(x) - cx'$ maps H^1 into S continuously, and thus the mapping $x \to (L + bI)^{-1}Nx$ is a completely continuous self map of H^1 . By the Leray-Schauder degree theory (see, e.g., Lloyd [3]) there is a solution to the equation $x = (L + bI)^{-1}Nx$ if there is an *a priori* bound in H^1 on the possible solutions to the family of equations

$$x = \lambda (L + bI)^{-1} Nx, \quad 0 < \lambda < 1.$$
 (1.3)

It is easily seen that $x \in H^1$ is a solution of (1.3) if and only if $x \in D(L)$ and x extends on R to a T-periodic solution of the equation

$$x'' + (1 - \lambda)bx + \lambda cx' + \lambda g(x) = \lambda f. \tag{1.4}$$

Suppose x is a T-periodic solution of (1.4). Multiplying each side of (1.4) by x', integrating the resulting equation from 0 to T, and using x(0) = x(T), x'(0) = x'(T), we obtain

$$\lambda \int_0^T c|x'|^2 dt = \lambda \int_0^T fx' dt.$$

Thus, for $0 < \lambda < 1$, we have

$$||x'|| \le ||f||/|c|. \tag{1.5}$$

Now integrating each side of equation (1.4) from 0 to T we obtain

$$(1-\lambda)b\int_0^T x(t) dt + \lambda \int_0^T g(x(t)) dt = 0,$$

since m = 0. By the mean value theorem for integrals, there is a number z, $0 \le z \le T$, such that

$$(1 - \lambda)bx(z) + \lambda g(x(z)) = 0. \tag{1.6}$$

Since b > 0 and $g(x)x \ge 0$ if $|x| \ge r$, (1.6) implies that $|x(z)| \le r$. We now may write

$$x(t) = x(z) + \int_z^t x'(s) ds$$

and thus

$$|x(t)| \le r + T^{1/2} ||x'||$$
 (1.7)

by the Cauchy-Schwarz inequality. Combining (1.5) and (1.7) we have, for any solution x and any λ , $0 < \lambda < 1$,

$$|x|_1 \le r + T^{1/2} ||x'|| + ||x'|| \le r + (T^{1/2} + 1)||f||/|c|.$$
 (1.8)

By (1.8) all possible solutions of (1.3) are bounded in H^1 , independently of λ , $0 < \lambda < 1$. The existence of a *T*-periodic solution follows by the Leray-Schauder alternative, as indicated earlier. Q.E.D.

REMARKS. Let $h: R \to R$ be continuous. Then a minor modification in the proof of Theorem 1 can be used to show that the equation

$$x'' + h(x)x' + g(x) = f(t) \equiv f(t+T)$$
 (1.9)

has a T-periodic solution provided (i) holds and there is a number c > 0 such that either $h(x) \ge c$ for all $x \in R$ or $h(x) \le -c$ for all $x \in R$.

It is easy to verify that (i) is also necessary if g is an increasing (decreasing) function. Integrate (1.9) from 0 to T, apply the mean value theorem for integrals and then use the assumption that g is increasing (decreasing).

NOTE ADDED IN PROOF. Shortly before proofs for this paper were received a paper of J. Bebernes and M. Martelli, *Periodic solutions for Liénard systems*, appeared in Bol. Un. Mat. Ital. (5) **16-A** (1979), 398-405. They obtain the same results by a different (and slightly longer) method.

REFERENCES

- 1. S. Fucik and V. Lovicar, Periodic solutions of the equation x''(t) + g(x(t)) = p(t), Časopis Pěst. Mat. 100 (1975), 160–175.
- 2. A. C. Lazer, On Schauder's fixed point theorem and forced second-order nonlinear oscillations, J. Math. Anal. Appl. 21 (1968), 421-425.
 - 3. N. G. Lloyd, Degree theory, Cambridge Univ. Press, Cambridge, 1978.

DEPARTMENT OF MATHEMATICS, PAN AMERICAN UNIVERSITY, EDINBURG, TEXAS 78539

Current address: Department of Mathematics, University of Alabama, University, Alabama 35486