A NEW CRITERION FOR \boldsymbol{p}-VALENT FUNCTIONS

R. M. GOEL AND N. S. SOHI

Abstract. In this paper we consider the classes K_{n+p-1} of functions $f(z)=z^{p}+$ $a_{p+1} z^{p+1}+\cdots$ which are regular in the unit disc $E=\{z:|z|<1\}$ and satisfying the condition

$$
\operatorname{Re}\left(\left(z^{n} f\right)^{(n+p)} /\left(z^{n-1} f\right)^{(n+p-1)}\right)>(n+p) / 2
$$

where p is a positive integer and n is any integer greater than $-p$. It is proved that $K_{n+p} \subset K_{n+p-1}$. Since K_{0} is the class of p-valent functions, consequently it follows that all functions in K_{n+p-1} are p-valent. We also obtain some special elements of K_{n+p-1} via the Hadamard product.

1. Introduction. Let $A(p)$ denote the class of functions

$$
\begin{equation*}
f(z)=z^{p}+a_{p+1} z^{p+1}+\cdots, \quad p \text { a positive integer } \tag{1}
\end{equation*}
$$

which are regular in the unit disc $E=\{z:|z|<1\}$. In this paper we shall prove that a function $f \in A(p)$ and satisfying one of the conditions

$$
\begin{equation*}
\operatorname{Re}\left(\frac{\left(z^{n} f\right)^{(n+p)}}{\left(z^{n-1} f\right)^{(n+p-1)}}\right)>\frac{n+p}{2}, \quad z \in E, \tag{2}
\end{equation*}
$$

n any integer greater than $-p$, is p-valent in E. We denote by K_{n+p-1} the classes of functions $f(z) \in A(p)$ and satisfying (2). We shall show that

$$
\begin{equation*}
K_{n+p} \subset K_{n+p-1} . \tag{3}
\end{equation*}
$$

Since K_{0} is the class of functions which satisfy the condition

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>\frac{2 p-1}{2}>0
$$

and we know from [4] that such functions are p-valent, the p-valence of functions in K_{n+p-1} will follow from (3). By taking $p=1$, we get the classes K_{n} introduced by \mathbf{S}. Ruscheweyh in [3] and thus our results are generalizations of Ruscheweyh's.
2. The classes K_{n+p-1}. Let f and g belong to $A(p)$. We denote by $f * g$ the Hadamard product or convolution of $f, g \in A(p)$, that is, if

$$
f(z)=z^{p}+\sum_{n=1}^{\infty} a_{p+n} z^{p+n}, \quad g(z)=z^{p}+\sum_{n=1}^{\infty} b_{p+n} z^{p+n},
$$

then

$$
f(z) * g(z)=z^{p}+\sum_{n=1}^{\infty} a_{p+n} b_{p+n} z^{p+n} .
$$

Received by the editors January 4, 1979 and, in revised form, April 26,1979.
AMS (MOS) subject classifications (1970). Primary 30A32, 30A36.
Key words and phrases. p-valent functions, p-valent starlike functions, Hadamard product.

Let

$$
\begin{equation*}
D^{n+p-1} f(z)=\frac{z^{p}}{(1-z)^{n+p}} * f(z) \tag{4}
\end{equation*}
$$

then

$$
\begin{equation*}
D^{n+p-1} f(z)=\frac{z^{p}\left(z^{n-1} f(z)\right)^{(n+p-1)}}{(n+p-1)!} \tag{5}
\end{equation*}
$$

From (2) and (5) it follows that a function f in $A(p)$ belongs to K_{n+p-1} if and only if

$$
\begin{equation*}
\operatorname{Re}\left(\frac{D^{n+p} f}{D^{n+p-1} f}\right)>\frac{1}{2}, \quad z \in E . \tag{6}
\end{equation*}
$$

In the notation (6), we can also define a class K_{-1} as the set of functions $f \in A(p)$ with $\operatorname{Re}\left(f(z) / z^{p}\right)>\frac{1}{2}, z \in E$.

We shall need the following lemma due to I. S. Jack [1].
Lemma 1. Let w be nonconstant and regular in $|z|<R, w(0)=0$. If $|w|$ attains its maximum value on the circle $|z|=r<R$, at z_{0}, we have $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)$ where k is a real number and $k \geqslant 1$.

Theorem 1. $K_{n+p} \subset K_{n+p-1}$.
Proof. Let $f \in K_{n+p}$,

$$
\begin{equation*}
g(z)=z^{p}\left(\frac{D^{n+p-1} f(z)}{z^{p}}\right)^{2 p /(n+p)} \tag{7}
\end{equation*}
$$

and $R=\sup \{r: g(z) \neq 0,0<|z|<r<1\}$. Then $u(z)=z g^{\prime}(z) / g(z)$ is regular in this circle. (4) yields the identity

$$
\begin{equation*}
z\left(D^{n+p-1} f\right)^{\prime}=(p+n) D^{n+p_{f}}-n D^{n+p-1} f \tag{8}
\end{equation*}
$$

Differentiating (7) logarithmically and using (8) we get

$$
\begin{equation*}
\frac{D^{n+p_{f}}}{D^{n+p-1} f}-\frac{1}{2}=\frac{1}{2 p} u \tag{9}
\end{equation*}
$$

Again taking the logarithmic derivative of (9) and using (8) we have

$$
\begin{equation*}
\frac{D^{n+p+1} f}{D^{n+p} f}-\frac{1}{2}=\frac{1}{n+p+1}\left(\frac{1}{2}+\frac{n+p}{2 p} u+\frac{z u^{\prime}}{u+p}\right) \tag{10}
\end{equation*}
$$

Since $f \in K_{n+p}$, therefore

$$
\begin{equation*}
\operatorname{Re}\left(\frac{n+p}{2 p} u+\frac{z u^{\prime}}{u+p}\right)>-\frac{1}{2}, \quad|z|<R \tag{11}
\end{equation*}
$$

In order to prove the theorem it is sufficient to prove that $\operatorname{Re} u>0$ for $|z|<1$.
Let $u=p(1+w) /(1-w)$; then

$$
\begin{equation*}
\frac{z u^{\prime}}{u+p}+\frac{n+p}{2 p} u=\frac{z w^{\prime}}{w} \cdot \frac{w}{1-w}+\frac{n+p}{2} \cdot \frac{1+w}{1-w} \tag{12}
\end{equation*}
$$

If $\operatorname{Re} u\left(z_{0}\right)=0$ for a certain $z_{0},\left|z_{0}\right|<R$, and $\operatorname{Re} u(z) \geqslant 0,|z| \leqslant\left|z_{0}\right|$, then $|w(z)| \leqslant\left|w\left(z_{0}\right)\right|=1$ for $|z| \leqslant\left|z_{0}\right|$ and $w\left(z_{0}\right) \neq 1$. By applying Lemma 1 , (12) gives

$$
\operatorname{Re}\left(\frac{z_{0} u^{\prime}\left(z_{0}\right)}{u\left(z_{0}\right)+p}+\frac{n+p}{2 p} u\left(z_{0}\right)\right)=-\frac{1}{2} \frac{z_{0} w^{\prime}\left(z_{0}\right)}{w\left(z_{0}\right)} \leqslant-\frac{1}{2},
$$

which contradicts (11). Therefore $\operatorname{Re} u(z)>0$ for $|z|<R$, and hence $g(z)$ is p-valent in $|z|<R$. Thus we see that $g(z)$ cannot vanish on $|z|=R$ if $R<1$. Hence $R=1$ and this proves the theorem.

Remark 1. If we put

$$
\begin{equation*}
g(z)=z^{p}\left(\frac{D^{n+p-1} f}{z^{p}}\right)^{p /(n+p)} \tag{13}
\end{equation*}
$$

then we have

$$
p \frac{D^{n+p} f}{D^{n+p-1} f}=\frac{z g^{\prime}}{g} .
$$

This implies that $f \in K_{n+p-1}$ if and only if g is p-valently starlike of order $\frac{1}{2}$.
3. Special elements of K_{n+p-1}. In this section, we form special elements of the class K_{n+p-1} via the Hadamard product of elements of K_{n+p-1} and $h_{\nu}(z)$, where

$$
\begin{equation*}
h_{\nu}(z)=\sum_{j=p}^{\infty} \frac{\nu+p}{\nu+j} z^{j}, \quad \operatorname{Re} \nu>-p \tag{14}
\end{equation*}
$$

Theorem 2. If p is any positive integer, n an integer greater than $-p$ and $\operatorname{Re} \nu \geqslant(n-p) / 2$, then $f * h_{\nu} \in K_{n+p-1}$ for all $f \in K_{n+p-1}$. In particular $h_{\nu} \in$ K_{n+p-1}.

Proof. One can easily verify that the function $F=f * h_{\nu}$ satisfies

$$
\begin{equation*}
z\left(D^{n+p-1} F\right)^{\prime}=(p+\nu) D^{n+p-1} f-\nu D^{n+p-1} F \tag{15}
\end{equation*}
$$

Since the families K_{n+p-1} are compact, it is enough to prove the theorem for $\operatorname{Re} \nu>(n-p) / 2$. Let

$$
\begin{equation*}
g=z^{p}\left(\frac{D^{n+p-1} F}{z^{p}}\right)^{p /(n+p)}, \tag{16}
\end{equation*}
$$

and $R=\sup \{r: g(z) \neq 0,0<|z|<r<1\}$. We shall prove that $\operatorname{Re}\left(z g^{\prime} / g\right)>$ $p / 2,|z|<R$, and this implies $R=1$. Define a regular function $w(z)$ in E by

$$
\begin{equation*}
p \frac{D^{n+p} F}{D^{n+p-1} F}=\frac{z g^{\prime}}{g}=\frac{p}{1-w(z)} . \tag{17}
\end{equation*}
$$

Obviously $w(0)=0, w(z) \neq 1$ for $z \in E$. Differentiating (16) logarithmically and using (15) we obtain, after a simple computation,

$$
\begin{equation*}
\left(\frac{n+p}{1-w}+\nu-n\right) D^{n+p-1} F=(p+\nu) D^{n+p-1} f . \tag{18}
\end{equation*}
$$

Again, differentiating (18) logarithmically and using (8) and (15), we get

$$
\begin{equation*}
\frac{D^{n+p} f}{D^{n+p-1} f}=\frac{z w^{\prime}}{(1-w)^{2}}\left(\frac{n+p}{1-w}+\nu-n\right)^{-1}+\frac{1}{1-w} \tag{19}
\end{equation*}
$$

We show $|w(z)|<1$, for otherwise by Lemma 1 , there exists z_{0} in $|z|<R$ such that $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right),\left|w\left(z_{0}\right)\right|=1$ and $k \geqslant 1$. Then

$$
\frac{D^{n+p} f\left(z_{0}\right)}{D^{n+p-1} f\left(z_{0}\right)}=\frac{1}{1-w\left(z_{0}\right)}+\frac{k w\left(z_{0}\right)}{\left(1-w\left(z_{0}\right)\right)^{2}} \cdot\left(\frac{n+p}{1-w\left(z_{0}\right)}+\nu-n\right)^{-1}
$$

Since $\operatorname{Re} 1 /\left(1-w\left(z_{0}\right)\right)=\frac{1}{2}, w\left(z_{0}\right) /\left(1-w\left(z_{0}\right)\right)^{2}$ is real and negative and

$$
\operatorname{Re}\left(\frac{n+p}{1-w\left(z_{0}\right)}+\nu-n\right)^{-1}>0 \quad \text { for } \operatorname{Re} \nu>\frac{n-p}{2}
$$

hence

$$
\operatorname{Re} \frac{D^{n+p} f\left(z_{0}\right)}{D^{n+p-1} f\left(z_{0}\right)}<\frac{1}{2} .
$$

This contradicts the fact that $f \in K_{n+p-1}$. Hence $F \in K_{n+p-1}$. Since $h_{\nu}=$ $\left(z^{p} /(1-z)\right) * h_{\nu}$, therefore $h_{\nu} \in K_{n+p-1}$.

Remark 2. The first part of Theorem 2 can also be written in a more suggestive form as follows. Let $\operatorname{Re} \nu \geqslant(n-p) / 2$. If $f \in K_{n+p-1}$, then

$$
F(z)=\frac{\nu+p}{z^{\nu}} \int_{0}^{z} t^{\nu-1} f(t) d t \in K_{n+p-1} \quad \text { for } \operatorname{Re} \nu>\frac{n-p}{2} .
$$

For $n=0, p=1$, we get the result due to Libera [2].
Theorem 3. Let $F \in K_{n+p-1}, t=\operatorname{Re} \nu \geqslant(n-p) / 2$. Let $f(z)$ be the unique solution of $F(z)=h_{\nu} * f(z)$. Then $\operatorname{Re}\left(D^{n+p} f / D^{n+p-1} f\right)>\frac{1}{2}$ in $|z|<R$, where R is the smallest positive root of $(t-n) r^{2}+(p+n+2) r-p-t=0$.

This result is sharp when ν is real.
Proof. Since $F \in K_{n+p-1}$, it follows by Remark 1 that

$$
\begin{equation*}
g=z^{p}\left(\frac{D^{n+p-1} F}{z^{p}}\right)^{p /(n+p)} \tag{20}
\end{equation*}
$$

is p-valently starlike of order $\frac{1}{2}$. Define a regular function $u(z)$ in E by

$$
\begin{equation*}
p \frac{D^{n+p} F}{D^{n+p-1} F}=\frac{z g^{\prime}}{g}=p u(z) . \tag{21}
\end{equation*}
$$

Obviously $u(0)=1$ and $\operatorname{Re} u(z)>\frac{1}{2}$ for $z \in E$. As in Theorem 2 , we can easily see that

$$
\begin{equation*}
(p+\nu) D^{n+p} f(z)=\left((\nu-n) u(z)+(n+p) u^{2}(z)+z u^{\prime}(z)\right) D^{n+p-1} F(z) \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
(p+\nu) D^{n+p-1} f(z)=((\nu-n)+(n+p) u(z)) D^{n+p-1} F(z) \tag{23}
\end{equation*}
$$

From (22) and (23), we get

$$
\begin{equation*}
\frac{D^{n+p} f(z)}{D^{n+p-1} f(z)}-\frac{1}{2}=u(z)-\frac{1}{2}+\frac{z u^{\prime}(z)}{\nu-n+(n+p) u(z)} . \tag{24}
\end{equation*}
$$

It is well known that for $|z|=r<1$,

$$
\begin{equation*}
\left|z u^{\prime}(z)\right| \leqslant\left(2 r /\left(1-r^{2}\right)\right)\left(\operatorname{Re} u(z)-\frac{1}{2}\right) \tag{25}
\end{equation*}
$$

Thus from (24) and (25) we have for $|z|=r<1$,

$$
\begin{equation*}
\operatorname{Re}\left(\frac{D^{n+p} f(z)}{D^{n+p-1} f(z)}-\frac{1}{2}\right) \geqslant \operatorname{Re}\left(u(z)-\frac{1}{2}\right)\left(1-\frac{2 r}{(1-r)(p+t+(t-n) r)}\right) \tag{26}
\end{equation*}
$$

where we have used $\operatorname{Re} u(z)>1 /(1+r)$ for $|z|=r$.
Thus $\operatorname{Re}\left(D^{n+p} f(z) / D^{n+p-1} f(z)-\frac{1}{2}\right)>0$ if the right-hand side of (26) is positive, which is satisfied provided $|z|<R$, where R is the smallest positive root of $(t-n) r^{2}+(p+n+2) r-p-t=0$. To show that the result is sharp, we consider $F(z)=z^{p} /(1-z)$. Then the unique solution of $F(z)=h_{\nu}(z) * f(z)$ is

$$
f(z)=\frac{z^{p}(p+\nu-(p+\nu-1) z)}{(p+\nu)(1-z)^{2}}
$$

Now $F \in K_{n+p-1}$ and it can be easily seen that

$$
\left(z^{\nu} D^{n+p} F(z)\right)^{\prime}=(p+\nu) z^{\nu-1} D^{n+p_{f}}(z)
$$

and

$$
\left(z^{\nu} D^{n+p-1} F(z)\right)^{\prime}=(p+\nu) z^{\nu-1} D^{n+p-1} f(z)
$$

This implies that

$$
\begin{aligned}
\frac{D^{n+p} f(z)}{D^{n+p-1} f(z)} & =\left(\frac{z^{\nu+p}}{(1-z)^{n+p+1}}\right)^{\prime} /\left(\frac{z^{\nu+p}}{(1-z)^{n+p}}\right)^{\prime} \\
& =\frac{1}{1-z}+\frac{z}{(1-z)(\nu+p+(n-\nu) z)}
\end{aligned}
$$

This yields

$$
\frac{D^{n+p} f(z)}{D^{n+p-1} f(z)}=\frac{1}{2} \quad \text { for } z=-R .
$$

Hence the result is sharp for ν real.

References

1. I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. (2) 3 (1971), 469-474.
2. R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758.
3. S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.
4. T. Umezawa, Multivalently close-to-convex functions, Proc. Amer. Math. Soc. 8 (1957), 869-874.

Department of Mathematics, Punjabi University, Patiala-147002, India

