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A PROOF OF THE MEAN ERGODIC THEOREM FOR

NONEXPANSIVE MAPPINGS IN BANACH SPACE

NORIMICHI HIRANO

Abstract. Let C be a closed convex subset of a uniformly convex Banach space.

Let T: C -» C be a nonexpansive mapping. In this paper, we deal with the weak

convergence of the arithmetical means of the sequence T"x, and give a new proof

of the mean ergodic theorem for nonexpansive mappings.

1. Introduction. Let A1 be a Banach space and C be a closed convex subset of X.

A mapping T: C —* C is called nonexpansive on C if

\\Tx - Ty\\ < \\x - y\\    for all x, v G C.

Let F(T) be the set of fixed points of T. If X is strictly convex, F(T) is closed and

convex. In [1], Bâillon proved the first nonlinear ergodic theorem such that if A1 is a

real Hubert space and F(T) =£ i>, then for each x G C, the sequence {S„x} defined

by

Snx = (\/n)(x + Tx + ■ ■ ■ + T"-Xx)

converges weakly to a fixed point of T. It was also shown by Pazy [7] that if A" is a

real Hubert space and S„x converges weakly to y G C, then y G F(T). These

results were extended by Bâillon [2], Brück [4] and Reich [8], [9]. In this paper, we

give a new proof of the following theorem which is due to Reich [9].

Theorem. Let X be a uniformly convex Banach space which has a Fréchet

differentiable norm. Let C be a closed convex subset of X and T: C -* C be a

nonexpansive mapping. Then the following conditions are equivalent:

(a)F(T)^$;

(b) {T"x) is bounded for each x G C;

(c) for each x G C, S„T'x converges weakly to y El C, uniformly in i = 1, 2, ... .

2. Preliminaries. Let A be a uniformly convex Banach space. The duality

mapping J of X into X* is given by the conditions

(J(x), x) = \\x\\2,       \\Jx\\ « ||x||.

If X is assumed to have a Fréchet differentiable norm, J is continuous, co D

denotes the convex hull of D, co D the closed convex hull of D. For x,y G X,

[x,y] denotes the set {Xx + (l-X)v:0<X<l}. Strong convergence is denoted

by -* and weak convergence is denoted by -».
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The following lemmas are crucial for our discussion. The next lemma is known

(cf. [6]). It is a simple consequence of the definition of the modulus of convexity.

Lemma 1. Let X be a uniformly convex Banach space with modulus of convexity 8.

Let x,y G X. If \\x\\ < r, \\y\\ < r, r < R, and \\x - y\\ > e > 0, then

\\Xx + (1 - X)v|| < r(\ - 2X(1 - X)8R(e))

for allX:0<X< 1, where dR(e) = 8(e/R).

Below, X will denote a uniformly convex Banach space with modulus of

convexity 8.

Lemma 2. Let C be a closed convex subset of X and T: C —*■ C be a nonexpansive

mapping. Let x G C, f G F(T) and 0 < a < ß < 1. Then for each e > 0, there

exists N > 0 such that for all n > N,

\\Tk(XTnx + (1 - X)f) - (XT"+kx + (1 - X)/)|| < e

for all k>0andX: a < X < ß.

Proof. Put r = limj| T"x - f\\, R = \\x - f\\, and c = min{2X(l - X): a < X <

/?}. For given e > 0, choose d > 0 so small that r/(r + d) > 1 - c8R(e). Then

there exists N > 0 such that for all n > N, \\ T"x - f\\ < r + d. For n > N, k > 0

and a < X < ß, we put u = (1 - X)(Tkz - f) and v = X(Tn+kx - Tkz) where

z = XT"* + (1 - X)f. Then ||u|| < X(l - X)\\Tnx - f\\ and ||o|| < X(l - X)\\T"x -
/||. Suppose that ||h - u|| = \\Tkz - (XTn+kx + (1 - X)/)|| > e. Then by Lemma

1,

||A« + (l-X)0||-X(l-^)l|7'-+*x-/||

< X(l - X)|| T"x - f\\(l - 2X(1 - X)8R(e))

< X(l - X)\\T"x - f\\(l - c8R(e)).

Hence we have (r + d)(\ — c8R(e)) </■<(/■ + d)(l — c8R(e)), which is a con-

tradiction.

Lemma 3 (Browder [3]). Let C be a closed convex subset of X and T: C —* C be a

nonexpansive mapping. If {m,} is a weakly convergent sequence in C with weak limit

u0 and if lim,||w, — Tu¡\\ = 0, then u0 is a fixed point of T.

3. Proof of Theorem.

Lemma 4. Let C be a closed convex subset of X and T: C —> C be a nonexpansive

mapping. Then for each x G C and each n > 0,

lim || T% T'x - S„ Tkrx\\ = 0    uniformly in k= 1,2,_ (*)

Proof. The proof is by induction on n. First we prove in the case n = 2. Put

r = limJI T"+Xx - T"x\\, R = ||jc - 7x|| and x¡ = Tx for i = 1, 2,_If r =£ 0,

then for given e > 0, choose c > 0 so small that r/(r + c) > 1 — 8R(e)/2. Then
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there exists N > 0 such that for all i > N, \\Tkx¡ - T*+1x,|| < r + c f or k =

1,2,_If we put u =j(Tkz - Tkx¡) and v =\(Tk+xxt - Tkz) where i > N,

k > 0 and z = \(x¡ + Tx¡), then

IlU|| <{\\z-xl\\-\\\Tx,-x,\\ <\(r+c).

Similarly, ||o|| <\(r + c). Suppose that ||u - o|| = \\Tkz - \(Tk+xx¡ + T*x,.)|| >

e. Then by Lemma 1,

||i(n + o)|| =\\\Tk + xxt - 1*x,\\ < \(r + c)(l -\SR(e)),

which contradicts r > (r + c)(l — \ôR(e)). If r = 0, then for given e > 0, choose

/ > 0 so large that ||w|| < e/2 and ||u|| < e/2. Hence we have \\Tkz - \(Tk+xxt +

TkXj)\\ = \\u - v\\ < \\u\\ + \\v\\ < e. This completes the proof of the case n = 2.

Now suppose that lim,||T'cSn_1x, — S„_xTkx¡\\ = 0, uniformly in k = 1,2, . . . .

We claim that lim,||5„_1Tx, — x,|| exists. Put r = lim infI.||SB_,7';c/ — x,||. Given

e > 0, choose i > 0 such that ||5n_,Tc, - x,|| < r + e/2 and \\Sn_xTkxi+x -

TkSn_xxi+x\\ < e/2. Then

\\Sn_xTxi+k - xi+k\\ < \\Sn_xTkxi+l - TkSn_xxi+x\\ + \\TkSn_lXi+l - T%\\

< e/2 + r + e/2 = r + e,   for k = 1, 2,_

Therefore

lim sup ||S„_xTxt - xt\\ = lim sup ||S„_xTxi+k - xi+k\\ < r + e.
i k

Since e is arbitrary, we have

lim sup||5n_,Tx, — x,|| < lim inf ||Sn_xTx¡ — x¡\\,
i •

i.e., lim,||5n_,Tx, - x,|| exists. Now we put r = limi\\S„_xTx¡ — x¡\\. If r i= 0, for

given e > 0, choose c > 0 so small that (r — c)/(r + 2c) > 1 — (2(n —

l)/n2)83r(e). Then there exists N > 0 such that if i > N,\ ||S„_,T.x,. - x(\\ - r\ < c

and ||S„_xTkxi+x - T*S„_,x, + 1|| < c/n. For k > 0 and i > N, we put u = (n/(n

- l))(TkSnX¡ - r*x,.)andü = n(Sn_xTkxi+x - TkSnX¡). Then

INI < l|5„_,Tx,.-x,.|| <r + c,

HI < n\\S„_xTkxi + x - TkSn_xxi+l\\ + \\Sn_xTX¡ - x,.|| < r + 2c,

II« - o|| = (n/(n - l))\\TkS„Xi - S„Tkxt\\.

Hence by the method in the proof of the case n = 2, we have || TkS„x¡ — 5„T*x,||

< e for k = 1,2,..., and all i > N. If r = 0, then as in the proof of the case

n = 2 there exists N' such that for each i > N', \\u\\ < e/2 and ||ü|| < e/2.

Therefore we have || TkSnx¡ — SnTkx¡\\ < e. This completes the proof.

We assume that the norm of A is Fréchet differentiable. Then we have the

following proposition.

Proposition 1 (cf. [4], [9]). Let C be a closed convex subset of X and T: C -» C

be a nonexpansive mapping. If we put W(x) = (~) m co{Tkx: k > m) for each

x G C, then W(x) n F( T) is at most one point.
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Proof. Suppose that /, g G W(x) n F(T) and f i= g. Put h = (/+ g)/2 and

r — lim,,|| T"* - g||. Since h G W(x), ||/t - g|| < r. For each n, we choose pn G

[T"x, h] such that

\\p„-g\\ = mm{\\y - g\\:y e[T"x, h]}.

By Theorem 2.5 of [5], (J( g — p„), p„ — T"x) > 0 where J is the duality mapping.

Sincep„ G [T"x, h], we have (J(g - p„), h - T"x) > 0. Suppose that

lirn inf ||/j„ -g|| = ||A - g||.

Since X is uniformly convex and \\pn - g\\ < \\(p„ + h)/2 - g\\ < \\h - g\\, pn

converges strongly to h. Since the duality mapping J is norm-to-norm continuous,

we have that for given e > 0, there exists N > 0 such that (J(g — h) — J(g —

pn), h — T"x) > — e, for all n > N. Therefore we have

(J(g - h),h- T"x) = (J(g - h) - J(g - Pn), h - T"x)

+ (J(g-Pn),h- T"x)

> -e + 0 = -e.

Then it follows that for each.y G D m co~{Tkx: k > m), (J(g - h), h - y) > 0. If

we put v = g, we have \\h — g\\ = 0. This contradicts hi^g. Suppose that

lim inf„||//-n - g|| < \\h - g||, then there exist c > 0 and a subsequence {p^} of

{/>„} such that ||/^ - g\\ + c < \\h - g\\. Put Pn¡ - a^x + (1 - at)h, for i =

1, 2, ... . Then there exist a > 0 and ß < 1 such that a < a¡ < ß for all /'. By

Lemma 2, there exists N > 0 such that if « > N,

\\Tk(XT"x + (1 - X)h) - (XTn+kx + (1 - X)h)\\ < c

for all X: a < X < ß and for all k > 0. If we choosey G {p^} such that n¡ > N,

we have

ll/V* - «II = \\(«i.T%+kx + i1 - Oh) - «ll

< nrXo - (V%+** + (i - «,.»|| + nr\ - g||

<c + ||ä, -«II < l|A-«ll'0

for A: = 1, 2, ... . Therefore we have p„ ¥= h for all n > n¡. It follows that

(/(g_- A), A - T"x) < 0 for /j > n,v Then we have (J(g - h),°h - y) < 0 for all

j> G cö{r*x: A: > aj,o}. Put y = f = h + (h - g), then \\h - g\\ = 0. This con-

tradicts h =£ g.

Proof of Theorem, (a) ^=> (b) is known [3]. (c) =» (b): Suppose that for some

x G C, there exists an unbounded subsequence {T^x} of {T"x}. Since T is

nonexpansive, we have that for each m > 0, the sequence {5,m7,",x} is also

unbounded. But this contradicts the condition (c). (b)=>(c): Since {T"x} is

bounded and

\\TSnT'x - SnTx\\ < \\TSnT'x - SHTTix\\ + ||5„7T'x - SHT'x\\

< \\TSnT'x - SnTrx\\ + (\/n)\\Ti+x + nx - Tbc\\,
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there exists a sequence {Snr-x} such that lim„||TSnT'-x - S„T'-x|| = 0. Then by

Lemma 3 and Proposition 1, we have that any weakly convergent subsequence of

{S„T'"x} converges weakly to.y, i.e., S„T'-x -* y where y = W(x) n F(T). Also by

Lemma 4, we have that limn||TSnT'-+*',+'x - S„F"+*n+'x|| = 0, for all / and k.

Therefore we have that SnT'" + k"xi -*y uniformly in k = 1, 2, ... . While for n and

m: m > in,

,    m-l ,    /     m-\ I    j \ \

SmTx = -  2   Tkx,■ = -       2     T"xt + n    £ SnT^k\\ +  2  Tkx\
m k% m\k=T+jn \k% )     k%       7

where m = jn + i„ + r, r < n. Since {SnT'H+knxi} converges to v uniformly with

respect to k, we have that SmT'x converges weakly to v, uniformly in / = 1, 2, ... .
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