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DIEUDONNÉ-SCHWARTZ THEOREM ON BOUNDED SETS

IN INDUCTIVE LIMITS

J. KUCERA AND K. McKENNON

Abstract. The Dieudonné-Schwartz Theorem for bounded sets in strict inductive

limits does not hold for general inductive limits E = ind lim E„. It does if every

closed convex set in E„ is closed in En+l. This condition is not necessary. In case

all spaces En are normed a necessary and sufficient condition for the validity of the

Dieudonné-Schwartz Theorem is given.

Let Ex g E2 G ■ ■ ■ be a sequence of locally convex spaces and E = ind lim En

their inductive limit (with respect to the identity maps id: En —* En+X). The

Dieudonné-Schwartz Theorem (further referred to as DST), see [2, Chapter 2, §12],

states that a set B c E is bounded if and only if it is contained and bounded in

some En, provided that

(H-l) each En is closed in En+x and

(H-2) the topology of each En equals the topology induced in En by En+X.

These two hypotheses imply [2, Chapter 2, §12]

(H-3) each En is closed in E.

It is shown in [3] that if H-3 holds and B is a bounded set in E, then B c E„ for

some n, but may not be bounded there. Therefore, in order to preserve the DST, we

need a stronger hypothesis than H-3. We introduce three more.

(H-4) each convex and closed set in En is closed in En+X,

(H-5) for each set B bounded and convex in En, the closure BE of B in E is

contained and bounded in En+p for somep G N,

(H-6) for each set B bounded and convex in En, the closure BE of B in E is

contained in En+p for some/? G N.

Lemma 1. H-4 => H-3.

Proof. Assume that Ex is not closed in E and x G EX\EX. Since Ex is closed in

E2, there exists a closed convex neighborhood U2 of 0 in E2 such that x & Ex +

2U2. Now, Ex + U2 is closed convex in E2 and, by H-4, closed in E3. Since

Ex + U2E G Ex + 2U2, there exists a closed convex neighborhood t/3 of 0 in E3

such that x £ Ex + U2 + 2U3. When all U2, t/3, . . . are constructed, the set

^i + U "-2(^2 + U3+ • • • + Uk) is a neighborhood of Ex in E which does not

contain x, a contradiction.

Theorem 1. H-4 =* DST.
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Proof. Let B be a bounded set in E. According to Lemma 1 and [3], B c En for

some n. Put n = 1 and assume B is not bounded in any Em, m G N.

Since El is a locally convex space, B is not weakly bounded there and there

exists a continuous linear functional/, : Zs, -» R which is unbounded on B. Choose

a sequence {bk} c Z? such that fx(bk) > k, k = 1, 2, ... . The set Í7, = {x G ZT,;

/,(x) < 1} is closed convex in Ex, hence closed in E2, and there exists a continuous

linear functional g: E2^> R such that [/, c {x G Z¿2; g(x) < 1} and g(bx) > 1.

If fx(x) = 0, then fx(kx) = 0 for every integer k and fo£ Ux. This implies

g(A;x) = 0 and g(x) = 0. Hence g\E = cfx, where g\E is the restriction of g to £,.

Then f2 = g/c is a continuous extension of /, to E2. The set U2 = {x E E2;

f2(x) < 1} is a closed convex neighborhood of 0 in E2 for which Ux c U2 and

A, £ U2, b2/2 G £/2.

Since U2 is closed in £3, the process can be repeated until we get a sequence [fk:

Zs¿ -> R; k = 1, 2, 3, ... } of continuous linear functionals, each of which is an

extension of its predecessor, and br/r & Uk = fk~x(—oo, 1] for r = 1, 2, ..., k.

The set U = U "_ i Í/* ¡s a neighborhood of 0 in £ and 5 c sU for some s E N.

But Aj/í £ t/, which is a contradiction.

Theorem 2. If all En are normed spaces, then H-5 is equivalent to DST.

Proof. 1. Let DST hold and B be bounded and convex in En. Then B and BE

are bounded in E and BE must be bounded in some En+p. We did not need

normability of the Zs„'s.

2. Let H-5 hold and B be bounded in E but not bounded in any En. Denote by

Bn the closed unit ball in En. There exists A, G Z?\{0} and a closed convex

neighborhood F, of 0 in E such that A, £ F,. For some px E N, bxE Ep. Put

{/, =V. n B„ E. Then £/, c V, and A, £ t/,. Since F, n ZL is bounded and

convex in E„, U, is contained and bounded in some E„. Hence there exists A, G
Pv      l Pi z

5x2(7,. We may take p2 so that/?2 >px and b2 G Epi. Further, Ux is closed and

convex in E. Hence there exists a closed convex neighborhood F2 of 0 in E such

that A„ A2/2 £ Ux + 2V2. Put U2 = V2 n BpE. Again, U2 c K2 and A„

A2/2 G Í/, + C// cUx+ V2   G Ux+ V2+ V2. 2

We repeat this process until we get sequences {bk} c B, px <p2 < • • • , and a

sequence of closed convex neighborhoods Vx, V2, . . . of 0 in E, such that bk/k £

Ux + U2 + ■ ■ ■ + U„ for A: = 1, 2, . . . , n, where t/* = Vk n 5A£. Then (7 =

U T-ii^i + ^2 + ' * " + £4) is a neighborhood of 0 in £ and B o sU for some

i. But Aj/j G t/, a contradiction.

With a slight modification of the last proof we can get

Theorem 3. If all En are normal spaces then H-6 is equivalent to: Each bounded

set in E is contained in some En.

Lemma 2. Let X, Y be Banach spaces, X c Y, id: A'—» Y continuous, and X

reflexive. Then every bounded closed convex set in X is closed in Y.

The proof follows from the Alaoglu Theorem.

Theorem 4. If all En are reflexive Banach spaces, then DST holds.
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Proof. It is sufficient to show that H-5 holds. Let B be a bounded closed convex

set in En and b $ B. There exists a bounded closed convex neighborhood i/0 of 0

in E„ such that b <$. B + U0. By Lemma 2, B + U0 is bounded closed and convex

in En+X. Hence there is a bounded closed convex neighborhood Ux of 0 in En+X

such that b <£ B + U0 + Ux, etc. The set U = U T-oi^o + Ux + ■ ■ ■ + Uk) is a

neighborhood of 0 in E and b & B + t/, i.e. B is closed in 2¿.

Example. Let R+ = [0, oo), wn(x) = expx/n, x > 0, £„ = {/ G L2(R+);

\\wnf W2 < + 00}, n G A7. All 2s„ are Hubert spaces with the inner product (/, g) 1-»

(wnf> wng}2> Ex g E2g • • • , and id: En —> En+X are continuous. By Theorem 4,

DST holds. We show that H-l, and hence both H-3 and H-4, do not hold. It means

that H-4 is not a necessary condition in Theorem 1.

Take n G N und \/(n + 1) < a < b < \/n. Then exp(-ax) G En+X\E. The

functions

f i \ _ Í exP(_ ax)   for 0 < x < k,

\ exp( — bx)   for k < x,

all belong to En and converge in En + X to exp( — ax).
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