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A REMARK ON THE BOCHNER TECHNIQUE

IN DIFFERENTIAL GEOMETRY1

H. wu

Abstract. It is observed that by pushing the standard arguments one step further,

almost all the theorems in differential geometry proved with the help of Bochner's

technique can be sharpened.

The main purpose of this note is to make an observation of a function-theoretic

nature in global differential geometry. We shall take up a group of theorems

centering around the Bochner technique [B], which typically shows that under the

assumption of everywhere positive or negative curvature, certain geometrically

interesting tensor fields (e.g., Killing, projective, etc.) vanish. Making use of the

elementary fact that a nonconstant subharmonic function has no relative maxi-

mum, we shall show in essentially all cases that, instead of positivity or negativity,

quasi-positivity or quasi-negativity of the Ricci curvature suffices, where by defini-

tion the Ricci curvature is quasi-positive iff it is everywhere nonnegative and is in

addition positive (in all directions) at a point; similarly for quasi-negative. The

main point of this observation is that this wholesale generalization of these

theorems is achieved at no extra cost. Since the presence of zeroes of the Ricci (or

any) curvature usually causes technical difficulties, such generalizations deserve

notice. It therefore came as a surprise to the author that this one point seems to

have been consistently overlooked in the standard literature.

To be specific, let us begin with the theorem in [B] that a Riemannian manifold

M with negative Ricci curvature has no nonzero Killing vector field whose length

achieves a relative maximum. We now prove this assuming only quasi-negative

Ricci curvature. (In particular, a compact Riemannian manifold with quasi-nega-

tive Ricci curvature has only a finite isometry group; cf. [Kb 2, p. 55] and [K-N, p.

251].) We follow the standard proof and obtain for any Killing field X:

AÜm2)= t\DyX\2-S(X,X), (1)
i— 1

where A is the Laplace-Beltrami operator on functions, \X\ denotes the

Riemannian norm of X, {V¡} is an local orthonormal basis of vector fields, D is the

covariant differential operator and 5 is the Ricci tensor [Kb 2, p. 56]. Note that the

sum in (1) is globally defined. Since S(X, X) < 0, A^IA^2) > 0 and \X\2 is

subharmonic. The assumption that | A' | has a relative maximum then implies 1^1 is
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a constant c. If c > 0, X is nowhere zero. Now at a point where the Ricci curvature

is positive, the left side of (1) is zero while the right side would be positive. This

contradiction shows c = 0 and hence X = 0.

The above reasoning is typical. In this special case of Killing fields, one could

have concluded the proof in other ways. However, these are less adaptable to other

situations than the preceding one.

This theorem of Bochner has extensions in the compact case to projective and

conformai vector fields due respectively to Couty [C] and Yano [Yn 1], as well as a

refinement due to Frankel [F]; we now discuss these. Couty's theorem states that

on a compact Riemannian manifold of negative Ricci curvature, every projective

vector field is zero. We shall prove it only assuming quasi-negative Ricci curvature.

It suffices to consider an orientable M. Let X be the given projective vector field,

i.e., X generates a one-parameter group of transformations of M which preserve the

geodesies in a set-theoretic sense. Since the Ricci tensor S of M is negative

semidefinite, formula (19-3) on p. 209 of [C] implies S(X, X) = 0 and dX* =

8X* =0, where A1* is the 1-form dual to X and d and 5 are the usual operators in

Hodge theory (this requires compactness). In particular, S(X, X) = AX * = 0

where AX* = -(d8 + 8d)X*. Let {V¡} be a local orthonormal basis of vector

fields and define Duv = DVDV — DD v. Then with < , ) as the Riemannian metric,

a standard calculation yields:

A(i|A-*|2) = \DX\2 + / ¿  DyiVX*,X* \

= \DX\2 + S(X, X) + (AX*,X*) = \DX\2 > 0.

Hence \X*\2 is subharmonic. Since M is compact, \X*\2 is constant and therefore

DX = 0, i.e. X is parallel. In particular X is Killing and the preceding theorem of

Bochner implies X = 0.

This result on the vanishing of projective vector fields on a compact M with

quasi-negative Ricci curvature is needed elsewhere [Wu] to establish the finiteness

of the group of projective transformations. The latter requires a different set of

ideas. This paper had its origin in attempting to obtain the preceding extension of

Couty's theorem.

We now prove Yano's theorem in the form: a compact Riemannian manifold M

with quasi-negative Ricci curvature has no nonzero conformai vector field. Again it

suffices to assume M is orientable. Given a conformai vector field X on M, let X *

be its dual 1-form. By [L, p. 128], we have AX* + (1 - 2/n)d8X# = S(-, X),

where n = dim M > 2. If [, ] denotes the L2 inner product on M, then

[dX*,dX*] +[8X*,8X#] + (l --\[8X*,8X#] = f  S(X,X)

(cf. [C, p. 209]). Since by assumption S(X, X) < 0, this implies S(X, X) = 0 and

dX* = 8X* = 0. The proof in the projective case now applies verbatim.

Finally, Frankel's refinement of Bochner's theorem states that if M0 is a compact

Riemannian manifold with nonpositive sectional curvature and negative Ricci

curvature and if <p: M0 —> M0 is an isometry homotopic to the identity, then <jp is the
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identity. We shall prove this, with "negative Ricci curvature" replaced by "quasi-

negative Ricci curvature", again using the observation that a subharmonic function

with a relative maximum is a constant. The noncompact analogue of this theorem

[F, theorem on p. 375] will also be dealt with in due course. But first a preliminary

discussion.

Let M be a Cartan-H adamará manifold, i.e., a simply-connected, complete

Riemannian manifold with nonpositive sectional curvature. Given an isometry d>:

M-» M, its displacement function f: M-»[0, oo) is defined by/(x) = [d(x, í>(x))]2,

where d denotes Riemannian distance; / is a C°° function. The Hessian of / is

(D2f)(X, Y) = XYf - (DxY)f. To compute D2f(X, X) for a given X E Mx, let a

be the geodesic such that á(0) = X and for all s G R let ys: [0, 1] -> M be the

geodesic joining a(s) to $(a(i)); denote y0 simply by y. The following argument

essentially follows p. 14 of [B-O]. (I am very grateful to B. O'Neill for his clarifying

comments concerning this argument.) If L(s) denotes the length of y(s), then

f(a(s)) = L(s)2 and D2f(X, X) = (d2/ds2)L(s)\2s=0. Note that since for each s, |yj

is a constant, L(s)2 = {/¿IyJ}2 = /¿IyJ2- Thus a straightforward argument yields:

D2f(X, X) = if \\X(t)\2 - K(X(t))\X(t) A Y(0|2} dt, (.)
•'o

where X(t) is the Jacobi field along y induced by the variation {ys}, X(t) denotes

D^t)X(t), and K(X(t)) denotes the curvature of the plane spanned by {X(t), y(t)}.

Since K(X(t)) < 0 by assumption, (*) implies D^X, X) > 0. This being true for

all X, f is a C°° convex function ([B-O, Proposition 4.2]; see [B-O] and [G-W] for

properties of convex functions). If f(x) ^ 0 but D 2f = 0 on Mx, then for all

X E Mx such that XLy(Q), (*) implies that X(t) is parallel along y and that

K(X(t)) = 0. The former implies that <t>*(X) (which is just A^(l)) is perpendicular to

y(l) whenever A^-Ly(O), so that, in particular, ^»(^(O)) = y(\); the latter implies

that S(y(t), y(t)) = 0 where 5 is the Ricci tensor of M. Summarizing, we have:

Lemma. Let M be a Cartan- Hadamard manifold. Then the displacement function f

of an isometry $: M —> M is convex. If for an x, f(x) ¥= 0 but D2f = 0 on Mx, then

$(y(0)) = Y(l) and S(y(t), y(t)) = 0 for 0 < t < 1, where y: [0, \]-> M is the

unique geodesic joining x to í>(x); // moreover X(t) is the Jacobi field along y

interpolating X and d>»(Ar) where X E Mx and X ±y(0), then X(t) is parallel along y.

We can now prove Frankel's theorem very simply, assuming only quasi-negativ-

ity of the Ricci curvature. Notation and assumption as above, let tt: M —» M0 be

the universal covering of M0. Then M is a Cartan-Hadamard manifold and the

argument in [F] (see especially [Kb 2, pp. 57-59]) shows that there exists an

isometry $: M -» M such that <p ° it = tr ° $ and that d(x, i>(x)) depends only on

tt(x) for each x G M. The displacement function / of O may thus be considered a

function on the compact M and consequently achieves an absolute maximum.

Since/is convex by the Lemma, and hence subharmonic, / reduces to a constant c.

If c > 0, let v be a point of M at which the Ricci curvature is negative. D 2f being

identically zero, the Lemma implies that S(X, X) = 0 for the unit vector X G My
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tangent to the geodesic from v to 3>(y). Contradiction. Hence c = 0 and i> is the

identity; <p: M0 —> M0 is the identity after all.

In the argument of the preceding paragraph, instead of a compact M0, it suffices

to have a complete M0 such that the function d(x, $(x)) considered as a function

of it(x) G Mq achieves a relative maximum. This is the noncompact version of

Frankel's theorem assuming only quasi-negative Ricci curvature (the theorem on p.

375 of [F]).

The Lemma contains more information than that required for the proof of

Frankel's theorem. The Appendix will extract from it a simple proof of an

extension of Wolf's theorem [Wo].

In theory one can go on to re-examine all the results associated with the Bochner

technique (cf., e.g., [L], [Yn 2]) from the present point of view. We choose to

comment instead on three theorems. The first is the vanishing of the first Betti

number of a compact Riemannian manifold with positive Ricci curvature [Yn 2, p.

37]. We now know that quasi-positive Ricci curvature in fact suffices. However,

more general results can be proved by more elaborate arguments. On the one hand,

Yau has proved the vanishing of the first cohomology group with compact support

on a complete manifold when the Ricci curvature is quasi-positive [Yu 1, Theorem

6]. On the other, Cheeger and Gromoll have proved a structure theorem for

compact manifolds of nonnegative Ricci curvature which implies that a compact

manifold with quasi-positive Ricci curvature has a finite fundamental group

[C-G, Theorem 3].

A second theorem to be discussed is the theorem in [K-W]. An usual, the

reasoning in this note renders this theorem and all its corollaries valid also for

quasi-positive or quasi-negative curvature. We single out three corollaries: (i) A

compact Hermitian manifold M with quasi-positive scalar curvature has no non-

zero holomorphic n-form (n = dim M), (ii) A compact complex manifold with

quasi-positive first Chern class, i.e., it can be represented by a (1, 1) form which is

positive semidefinite everywhere and positive definite at a point, admits no nonzero

holomorphic />-form, p > 1. (iii) A compact Hermitian manifold M with quasi-

negative first Chern class has no nonzero holomorphic vector field. We note that, if

positivity of the first Chern class is assumed in (ii), then the statement for p = 1

can be strengthened to M being simply-connected ([Kb 1] together with Yau's

solution of the Calabi conjecture [Yu 2]). If in (iii) negativity of the first Chern class

is assumed, then it can be strengthened to the finiteness of the automorphism group

[Kb 2, p. 82]. Finally it should be remarked that, with a more elaborate argument,

Yau [Yu 1, Theorem 5] has generalized the results of [K-W] to complete Kahler

manifolds; in this regard, it is important to note that the results of [K-W] do not

require the metric to be Kahler.

The most important among vanishing theorems is that of Kodaira; if L is a

positive line bundle on a compact complex manifold M, then Hq(M, ü"(L)) = 0

for q > 1. The results of this note suggest that L should be assumed only to have a

quasi-positive first Chern class; in this generality, the theorem is probably false.

However, a much weaker statement has been conjectured for some years by
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Grauert and Riemenschneider (cf. [R 2, Conjecture II]), and the simple-minded

arguments of this work are definitely inadequate for the settlement of this issue.

What is true is that when M is in addition assumed to be Kahler, then Kodaira's

original argument [Kd] together with the reasoning above suffice to prove the

"quasi-positive" Kodaira vanishing theorem without further ado (this has been

done in the Appendix of [R 1], but by a different method). With the help of a

theorem of Moisezon, one can then prove the Kodaira imbedding theorem for

quasi-positive line bundles in a simple manner [R 2]. In particular, a compact

Kahler manifold with quasi-positive or quasi-negative Ricci curvature is algebraic.

We wish to call attention to these Kahler manifolds because they should be better

understood from a differential geometric point of view.

Appendix.

Proposition. Let M be a Cartan-H'adamará manifold and let f be the displace-

ment function of an isometry $: M -» M which is not equal to the identity. Then the

following are equivalent:

(A)/has a relative maximum.

(B)/ is a bounded function.

(C)f is a positive constant.

(D) The vector field which at each x £ M is tangent to the geodesic joining x to

4>(x) and has norm V f(x)  is parallel.

Three remarks before the proof: (1) The equivalence of (B), (C) and (D) is the

main theorem of [Wo]. Wolf made use of a rather technical result of Leon Green;

the present proof (including (A)) requires only the Lemma above which is alto-

gether elementary. (2) The equivalence of (A) and (B) unifies Wolfs theorem with

Frankel's (specifically, the theorem on p. 375 on [F]), thereby settling a problem

implicit in [F, p. 374, lines -9 to -7]. Perhaps more important than the formal

unification is the underlying fact herein exposed that both theorems ultimately rest

on the special properties of the displacement function. (In this regard, note that the

function \X\2 in the proof of Bochner's theorem is just an infinitesimal displace-

ment function.) (3) If one considers continuous convexity, then it is easy to prove

that V/ is a continuous convex function ([B-O, pp. 14-15]; cf. [G-W] for continu-

ous convexity). Since a nonconstant convex function on R must have at least linear

growth, another condition equivalent to (C) is the following: V/ has sublinear

growth, i.e., for some x G M and for some a G (0, 1), V f(y) < (d(x, y))a for all

y G M.

Proof of Proposition. (A) <=> (C). It is trivial that (C) => (A). Conversely, a

convex function being subharmonic, a nonconstant / would have no relative

maximum (cf. Lemma).

(B) «- (C). Trivially (C) => (B). For the converse, take x E M and let f : R -» M

be any geodesic through x. Then / ° f is a bounded convex function on R and

hence constant, f being arbitrary, / is constant.

(C) <=> (D). (D) =* (C) because a parallel vector field has constant length. To

prove (C) => (D), fix an x G M and let y: [0, 1] —* M be the geodesic joining x to
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4>(x). Let T: R —> M be the maximal extension of y. Since /(x) = c > 0 and

D2f = 0, the Lemma implies <ï>(y(0)) = y(l). Thus <&(T) c T and if Y denotes the

vector field in (D), then Y\T = t. In particular Y\y = y. Now take any unit vector

X E Mx, XLyifS); it suffices to prove DXY = 0. Let a be a geodesic such that

á(0) = X. Let r: [0, 1] X [0, 1] -> M be the rectangle such that the curve ys(t) =

r(s, t) is exactly the geodesic joining a(s) to 4>(a(j)). The same argument as above

then shows that Y\ys = ys; thus Y is the /-coordinate vector field of r. If X*

denotes the i-coordinate vector field of r, then the last assertion of the Lemma

states that X*\y is parallel along y. Note also that X*(x) = X. Thus DXY =

(Dx.Y)(x) = (DYX*)(x) = Dy(0)X* = 0.   Q.E.D.

Note (added March 20, 1979). The following paper has just come to the attention

of the author: P. Gauduchon, Fibres Hermitiens à endomorphisme de Ricci non

négatif, Bull. Soc. Math. France 105 (1977), 113-140. One part of this paper also

generalizes the vanishing theorems of [K-W] to the case of quasi-positive or

quasi-negative curvature (although without using this terminology). His method

and viewpoint are different from those set forth in the present paper.
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