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A SIMPLICITY THEOREM FOR AMOEBAS

OVER RANDOM REALS

FRED G. ABRAMSON1

Abstract. Let M be a countable standard transitive model of ZFC, tí be an

amoeba over M, and r be a random real over M.

Theorem, (a) There is no infinite set of reals X contained in the complement of &

with X £ M[r]; (b) If {xn\n < u) G M[r] is a sequence of distinct reals, then for all

large enough n, {x¡\2" < i < 2"+l] n â ¥= 0-

Introduction. Solovay's by now classical construction2 of a model of set theory in

which there is no non-Lebesgue-measurable set of reals has prompted a number of

unsuccessful attempts to obtain a similar model without recourse to any large

cardinal hypothesis. There is a certain plausible approach motivated by the

observation that iterated amoeba forcing, à la Martin's axiom, produces a model in

which, for any real/), almost every real is random over L(p)? The stumbling block

here has been the failure to obtain a "factoring" lemma, i.e., to analyze the

structure of what happens to the forcing algebras involved when they are reduced

over a given random real. The basic problem would be to factor an amoeba over a

random real.

Part (a) of the Theorem stated in the Abstract says that for r random over L, &

an amoeba over L, and r G L[&], the information about & encoded in r, or, more

specifically, the information about 6B's complement, is severely limited. (S,, of

course, contains every real in L. Part (b) gives a certain sense in which & contains

a thick portion of the reals in L[r] also. (The function n h» 2" is not a tight bound.

The point is that there is a certain thickness obtained independent of the choice of

&, r, and the sequence of reals.)

Aside from usual forcing technology and absoluteness considerations, the main

instrument of the proof is a combinatorial, measure-theoretic lemma about "cover-

ing" sequences of measurable functions with sets of small measure. Before getting

into the proofs themselves, let us make the notions involved precise.

Terminology and notation. By the "real numbers" we mean Cantor space, i.e., 2"

endowed with the usual topology. It will sometimes be useful to make 2" corre-

spond with the usual middle-third Cantor set. To this end, define v(x) = 2X(,)_,2 •

3-O + 1) for x G 2". By "Lebesgue measure" on the reals we mean the usual

Received by the editors July 14, 1978.

AMS (A/OS) subject classifications (1970). Primary 02K05, 28A20; Secondary 02K30, 04A15.
Key words and phrases. Amoeba forcing, Solovay forcing, random reals.

'This research supported, in part, by NSF Grant Number MCS76-07025.

2See Solovay [1970].

3For general background on iterated forcing and Martin's axiom, see Martin-Solovay [1970].

© 1980 American Mathematical Society

0002-99 39/80/0000-0124/$02.2 5

409



410 F. G. ABRAMSON

probability measure p such that for each /' < w, p({x\x(i) = 0}) = u({x|x(i) = 1})

= i-

For A: w—* the reals of ordinary real analysis and A Ç to, we say that A is

h-thick if for all large enough n, {/' G w|A(«) < i < h(n + 1)} n A J= 0.

Let ê be a fixed rational, 0 < i < 1. <?«- is {* ç 2a\X open and p(x) < i},

partially ordered so that X is stronger than Y if f X D T. S is {X C Ia \X closed

and p(X) > 0}, partially ordered so that X is stronger than Y if f X C Y. For the

remainder of this paper, let M be a fixed countable standard transitive model of

ZFC. 6B is an amoeba over M means that & is M-generic on C$t)M. & is freely

thought of either as an open set of reals of measure i, or as a code for such a set,

and for x any real (not necessarily in M[(£]), the meaning of "x G &" is well

defined and absolute. Simple density arguments show that â contains every set of

measure 0 coded in M. r is M-random means that r is the real determined by an

M-generic object on (S )M. r is A/-random iff r lies in every set of reals of measure

1 coded in M.

For the Theorem stated above to apply nontrivially to factoring an amoeba over

a random real, it would have to be the case that in M[&] there is a random real r

such that (2" n M[r]) — & is infinite. Observation 1 below shows that this is

always the case.

Notation. For any real r and n < a, r © n is the real given by (r © n)(i) = r(i)

iff i =£ n.

Observation 1. Let & be an amoeba over M. Then in M[(£] there is a real r such

that {w|r©n£6?}is infinite, and any such real is M -random.

Proof. Work in M[&]. Let X = {r\{n\r © n <£ &} is infinite). We show, in fact,

that p(X) > 0. Let Ym = (x|V n > m (r © n E &)}. 2" - X = U m<u Ym. If

p(X) = 0 then let m be such that p(Ym) > i. Now, for all x G Ym, x © (m + 1) G

(J, and it is routine to see that p({x © (m + l)|x G Ym}) = p(Ym), so ju(éE) > i, a

contradiction.

Let r£l, and take n such that r®níi Then r © n is A/-random as it can

be in no set of measure 0 coded in M, each of these being contained in &. It is easy

to check that as r © n is M-random, so must be r.   fj

Observation 1 gives us an example of an infinite sequence of reals in M[r],

namely {xn = r©«|n<w}, such that {x„} - & is infinite but, by the Theorem

we shall prove, it has no infinite subset in M[r].

The proof of the Theorem proceeds by giving an appropriate representation of

reals in M[r] as Borel functions in M and then by proving a "covering" principle

for sequences of measurable functions. As there will be several different models of

set theory involved, it will be necessary to speak of "codes" for Borel functions.

Rather than going into details, suffice it to say that we fix a way of representing

(total) Borel functions: 2" —> 2" by elements of 2" in such a way that the predicate

C(x) ="x is a code for a total Borel function" is n¡ and the predicate F(x,y, z)

= "the function coded by x applied to argument v yields value z" is A{ in the sense

that there are Sj and nj predicates P and Q such that whenever C(x) holds then

for all y and z, F(x, y, z)<^ P(x, y, z)*-+ Q(x,y, z). Thus C and F are absolute
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with respect to standard transitive models of ZF.

Notation. For 9 a (description of) a partial ordering, we write p \Y9 ®s to mean

that M Y p G 9 and p weakly forces ¥ over "?.

Proposition 2. Suppose X lt-s t E 2". Then there is x G M such that C(x) and X

Ir-g F(x, r, t), where r is the canonical name for the real given by the generic object on

S.

Proof. Work in M. For each / < u, let [Xy\j < w) be a maximal antichain of

{Y G X\Y «-g t(i) = 0 or Y hs f(i) = 1}. Let W = {(i,j)\Xij

Ihg /(/) = 1}. Take x to be a code for the function y h> {i'|3/[(/,./) E W A v E

A^y]}. Clearly, for r A/-random and r G X, F(x, r, Er(t)) holds, where Er(t) is the

evaluation of the term t in M[r].    □

Definition. Let {fn\n < «} be a sequence of functions: 2" -»2U, and let JijC

2W. Y covers X with respect to {/„} iff n({x G Xßn < to [f„(x) G Y]}) = u(A'). X

is easily covered with respect to {/„} iff Ve > 0 3Y[¡i(Y) < e A Y covers X with

respect to {/„}].

The following is purely a theorem of real analysis in ZFC.

Lemma 3. Let {f„\n < a] be a sequence of measurable functions: X -*2a, X G 2",

such that Vx E X Vi',y E «(/" ¥=j ->/(x) =£fj(x)). Then (a) X is easily covered with

respect to {/„}. Moreover, (b) if e > 0 there is X' G X such that ¡i(X') = ¡i(X) and

an open set U with fi(U) < e such that for all x G X', {i G w|/(x) £ U) is

(n h» n5/e)-thick.

Remark, (a) is not particularly obvious, even for very simple sequences {/„}. The

reader may wish to consider some examples like f„(x) = (1 — l/(« + 2)) • x for

0 < x < 1. (In this example we are taking "reals" to mean the usual unit interval

rather than 2". It is not hard to see that Lemma 3 applies also in this case.)

Proof of Lemma 3. We prove (b) which easily yields (a). It is safe to assume

« < 1, or else just take X' = X and U = 2". Also, we can assume n(X) > 0,

otherwise take X' = «7 = 0. For each n < w we construct Xn G X and an open set

Un such that:

(Ï) ,i(Xn) > n(X) ■ (I - l/(n + 2)2),

(ii)/t(C/„)<e. l/(" + 2)2,

(iii) Vx E Xn 3i [(n + 2)5/e < i < (n + 3)5/c A /■(*) É !/„].

Given such Xn and U„, as 2"„0 (" + 2)-2 < °°> taking X' = {x E *|x E Xn for

all large enough «}, n(X') = p(X). Also, as 2"_0 (" + 2)~2 < 1. taking  U =

U „<u U„, n(U) < €. Finally, for x G X', if m is such that x E Xn whenever n > m,

we have that whenever n > m + 2,

{i\n5/e <i<(n+ lf/e) n {i|/,(*) E U } * 0.

Fix n. Let 7 = {/|(/i + 2)5/« < i < (n + 3)5/«}. For i E 7, let / = j» •/.. / is a

measurable real-valued (in the ordinary sense of real analysis) function on X. Let

A G X be compact with juL4) > MÍ-*-) • (1 — ?• (» + 2)-2). By Lusin's theorem,

there is a compact B G A with ft(7i) > /x(A') • (1 — \- (n + 2)~2) such that for
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each i E I,f¡ is continuous on B. Thus the function x h> inf{|/(x) — fj(x)\ \i,j E I,

i ¥^j) is a continuous, strictly positive function on B. So 5 = inf{|/(x) — fj(x)\ \i,j

E I, i i=j, x E B] > 0. Let Y0, . . . , Yk_x be a pairwise-disjoint collection of basic

open neighborhoods of 2" such that each has measure \/k, Uj<k Yj = 2", and the

diameter of v[ Yf\ < Ô. So, for any x G B and/ < k there is at most one / G / with

/,(*) G Yj.
Claim. Suppose W Q B. Then there is/ < k such that

p({x E W\3i E I[f(x) E Yj]}) > Lp(W)/k.

Remark. To understand the point of this claim, imagine that p( W) = 1. Then it

says thatjhe amount of W that Yj "covers" is very large compared to the size of Y¡,

namely, /times as large. This is the essential combinatorial idea behind Lemma 3.

Proof of Claim. Let Z,7 = (x G W\f¡(x) G Yj). So for each /, if i # /' then

Zy n Zrj = 0. Thus

p({x E W\3i G I[f(x) E Yj}}) = 2  MZy).
16/

2 2 ázu)= 2 2 p(ziJ) = r-p(w),
j<k iei ielj<k

as {Z¡j\j < k) is a partition of W. So for some/ < k it must be that 2,s/ p(Z¡j) >

ï-p(W)/k.   n (for claim)

Now, construct a (finite) sequence of subsets of k, K0 Q Kx Q ■ ■ ■ Ç A^ as

follows. Let KQ = 0. Assume K, has been defined. Let Vt = (x G B\3i E I[f(x)

E U JeK¡ Yj]}. If jli(F,) > ft(*) • (1 - (« + 2)-2), then let s = / and Ä, is the last

element of our sequence. Otherwise, let W = B - V, andlet Kl+l = Kt u {/}

where/ is chosen so that ju({x G W\3i G I[f¡(x) G Yj]}) > F- p(W)/k. Obviously

j G Kt. As p(W) > p(X) ■ (l/2(n + 2)2),

p(Vl+l) > p(V,) + (f/k) -p(X)- {l/2(n + 2)2).

As k is finite, the iterative procedure eventually yields Ks such that p(Vs) > p(X)

■ (1 - (n + 2)~2).

p(X) > p(Vs) >s-{l/k)p(X)-{\/2(n + 2)2),

so letting U„ = U jeK Yj, we have p(U„) = s/k < 2(n + 2)2//. As / > 2(n +

2)4/e, p( U„) < t/(n + 2)2. Thus we have (ii). Now, taking Xn = Vs, we im-

mediately get (i) and (iii).   □ (for Lemma 3)

We now prove the Theorem stated in the Abstract, (b) clearly yields (a), so let

{xn\n < w} G M[r] be a sequence of distinct reals. Let t be a term such that Er(t)

is this sequence, and let A', be such that r E Xx and A', lhs t is a sequence of

distinct reals. Let tn be the term saying "the nth element of t". Now, working'in M,

for each n, let x„ be such that C(xn) A A", lhs F(x„, r, tn). For x G Xx, let f„(x) =

the unique z such that F(xn, x, z). For m, n E u, m =£ n, let Amn = {x|/m(x) =

f„(x)}. Suppose K^m,n) > 0. Then MÏVxE Am^z [F(xm, x, z) ^ F(x„, x, z)].

Thus Am   lhs tm = tn, for, if r' is M-random and r' E Amn, by absoluteness for 11}
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sentences,   M[r'\ N Vx E Amn\/z   [F(xm, x, z)<h> F(xn, x, z)]  and,   as  Amn G Xx,

M[r'] N F(xm, r', tm) A F(xn, /•', /„). This contradicts that A', lhs t is a sequence of

distinct reals. Thus n(Amn) = 0. Let X = Xx - \J {Amn\m, n G to, m ¥=n}. As

ti(X) = fi(Xx), r G X.

Now, let

<$ = { W G %\3X' G X 3c > 0

[ri(X')= ¡i(X) AVx E Jr'({/|/,(je) E W}is(«r^/25/€)-thick)]}.

Lemma 3(b) shows that <$> is dense in <3>r. As & is M-generic on 6*,, there is

W G 6D with ff Ç S. Let A", c be as in the definition of fy for W. As /i(A") =

KA"), r G X'. The statement Vx E X'({i\f(x) G W) is (n n> /i5/€)-thick) is n¡, so

by absoluteness we get that M[r] N {/|x, E W) is (« h^ n5/e)-thick. Since for large

enough n there is always an m with 2" < w5/e < (m + l)5/e < 2n+', Af[r] N {/|x,

E W) is (n 1^ 2")-thick. As W G &, we are done.   □ (for Theorem)
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