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A DD7ERGENT, TWO-PARAMETER, BOUNDED MARTINGALE

LESTER E. DUBINS1 AND JIM PITMAN

Abstract. An example is given of a divergent, uniformly bounded martingale

X = [X,: t E T] where the index t ranges over the set T of pairs of positive

integers with the usual coordinatewise ordering.

This note offers an example of a divergent, uniformly bounded, two-parameter

martingale which supplements the infinite-parameter example of Dieudonné [3].

Also offered here is a divergent, uniformly bounded, two-parameter, reversed

martingale simpler than the one mentioned in [4].

For m a positive integer and 0 < e < 1 an (m, e)-daisy is a partition II of the

universal event consisting of m + 1 events C, Bx, . . . , Bm where C, the center of

the daisy, has probability e, and the B¡ have equal probability (1 - e)/m. Let n, be

the two-element partition consisting of C u B¡ and its complement. Plainly, the

value of P(C|II,) on C u ¿?, is (1 + (1 — e)/me)~x, which is now abbreviated to

c(e, m). Consequently, sup1<(<m P(C|n,) = c(e, m) everywhere. Indeed, a simple

calculation shows that, for any pair s of positive integers a, b,

sup      P(C|n,) = c(e, m) (1)
a < /' < m — b

with probability greater than 1 — |s|//w, where |i| is a + b.

Let T be the set of all ordered couples of positive integers endowed with the

coordinatewise ordering, that is, s < t if each coordinate of t — s is nonnegative.

An array of partitions U,, t E T, is based on the (m, e)-daisy n if \t\ = m and

/ = (/",/) implies that n, is n,, and if n is a refinement of each II,.

Let n1, n2, . . . form a mutually independent sequence of partitions of the

universal event of a suitable probability space, such that, for each r, \Y is an

(mr, er)-daisy. Let {(nr),, / G T) be an array of partitions based on IV, and let S,

be the sigma-field generated by the partitions (TT)(, r = 1, 2,... . Let A be the

union of the centers C of the daisies TY.

Lemma. If mrer —* oo, then for each s

sup P(A\St) = 1    almost surely. (2)
t>s

Proof. As is evident from (1), mrer -» oo implies that, for each s,

sup(>i P(C|(LT),) -» 1 in distribution as r —> oo. Thus
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sup sup P(Cr\(W),) = 1    almost surely.
r       t>s

Since A includes Cr, P(A\S,) exceeds P(C|S,), which in turn equals P(C|(nr),)

because, for each t, the partitions (II1),, (II2),, . . . are independent. Consequently,

(2) must hold.

An array {II,, t G T) is decreasing if s < / implies IL^ is a refinement of II,. To

obtain a decreasing array based on an (m, e)-daisy IT, first note that IT, is

determined for \t\ = m. Then IT, must be the trivial partition for |/| > m, and the

array can be completed in various ways, for example by setting II, = n for

|/| < m. Say the decreasing case obtains if for each r the array {(IT),, t G T)

introduced above is decreasing. The increasing case is defined analogously.

Plainly, P(A\$i) is a uniformly bounded martingale or reversed martingale

according as the increasing or decreasing case obtains.

Proposition. Suppose wrer-» oo and 2er < oo. Then, in the increasing case,

P(A\%t), t G T, diverges with positive probability and, in the decreasing case, it

diverges with probability one.

Proof. Since the centers C are independent, Ser < oo implies 0 < PA < 1.

Consider first the decreasing case. For any increasing sequence t(J) G T, C\ S^ is

part of the trivial tail sigma-field of the independent sequence of partitions IT1,

IT2, . . . because mr -^ oo and (IT), is the trivial partition for |f| > mr. Thus

P(A\SI(J)) converges almost surely to the constant PA < 1. This, together with (2),

implies that P(A\S,) diverges almost surely. Consider now the increasing case. If

|/| > mr, then Cr, the center of IT', is (IT),-measurable, and hence S,-measurable.

So if t(j) = (j,j), each Cr and, hence, A, is measurable relative to the limit of the

S/in. Therefore, by Levy's martingale convergence theorem, P(A\St(j->) converges to

zero almost everywhere off A (and to 1 almost everywhere on A). This, together

with (2), implies that P(A\§>,) diverges almost everywhere on the complement of A.

D
As is easily verified, a uniformly bounded martingale parameterised by T which

diverges almost surely is Mt = 2A/,"/2", where (A/,1), (A/,2), ... is a sequence of

independent copies of the martingale described above.

Of course, examples such as these indicate the necessity of some auxiliary

condition to guarantee the almost sure convergence of multi-parameter

martingales. The last word on this subject does not yet seem to have been said, but

some such supplementary conditions can be found in the references.
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