A DIVERGENT, TWO-PARAMETER, BOUNDED MARTINGALE

LESTER E. DUBINS¹ AND JIM PITMAN

ABSTRACT. An example is given of a divergent, uniformly bounded martingale $X = \{X_i: t \in T\}$ where the index t ranges over the set T of pairs of positive integers with the usual coordinatewise ordering.

This note offers an example of a divergent, uniformly bounded, two-parameter martingale which supplements the infinite-parameter example of Dieudonné [3]. Also offered here is a divergent, uniformly bounded, two-parameter, reversed martingale simpler than the one mentioned in [4].

For m a positive integer and $0 < \varepsilon < 1$ an (m, ε) -daisy is a partition Π of the universal event consisting of m+1 events C, B_1, \ldots, B_m where C, the center of the daisy, has probability ε , and the B_i have equal probability $(1-\varepsilon)/m$. Let Π_i be the two-element partition consisting of $C \cup B_i$ and its complement. Plainly, the value of $P(C|\Pi_i)$ on $C \cup B_i$ is $(1+(1-\varepsilon)/m\varepsilon)^{-1}$, which is now abbreviated to $c(\varepsilon, m)$. Consequently, $\sup_{1 \le i \le m} P(C|\Pi_i) = c(\varepsilon, m)$ everywhere. Indeed, a simple calculation shows that, for any pair s of positive integers a, b,

$$\sup_{a \le i \le m-b} P(C|\Pi_i) = c(\varepsilon, m) \tag{1}$$

with probability greater than 1 - |s|/m, where |s| is a + b.

Let T be the set of all ordered couples of positive integers endowed with the coordinatewise ordering, that is, $s \le t$ if each coordinate of t - s is nonnegative.

An array of partitions Π_t , $t \in T$, is based on the (m, ε) -daisy Π if |t| = m and t = (i, j) implies that Π_t is Π_i , and if Π is a refinement of each Π_t .

Let Π^1 , Π^2 , ... form a mutually independent sequence of partitions of the universal event of a suitable probability space, such that, for each r, Π' is an (m_r, ε_r) -daisy. Let $\{(\Pi')_t, t \in T\}$ be an array of partitions based on Π' , and let S_t be the sigma-field generated by the partitions $(\Pi')_t$, $r = 1, 2, \ldots$ Let A be the union of the centers C' of the daisies Π' .

LEMMA. If $m_r \varepsilon_r \to \infty$, then for each s

$$\sup_{t>s} P(A|S_t) = 1 \quad almost \ surely. \tag{2}$$

PROOF. As is evident from (1), $m_r \varepsilon_r \to \infty$ implies that, for each s, $\sup_{t > s} P(C' | (\Pi')_t) \to 1$ in distribution as $r \to \infty$. Thus

Received by the editors December 11, 1978 and, in revised form, February 12, 1979.

AMS (MOS) subject classifications (1970). Primary 60G45.

Key words and phrases. Multi-parameter martingales.

¹Research supported by National Science Foundation Grant MCS 77-01665.

$$\sup_{t} \sup_{t>s} P(C'|(\Pi')_t) = 1 \quad \text{almost surely.}$$

Since A includes C', $P(A|S_t)$ exceeds $P(C'|S_t)$, which in turn equals $P(C'|(\Pi')_t)$ because, for each t, the partitions $(\Pi^1)_t$, $(\Pi^2)_t$, ... are independent. Consequently, (2) must hold.

An array $\{\Pi_t, t \in T\}$ is decreasing if $s \le t$ implies Π_s is a refinement of Π_t . To obtain a decreasing array based on an (m, ε) -daisy Π , first note that Π_t is determined for |t| = m. Then Π_t must be the trivial partition for |t| > m, and the array can be completed in various ways, for example by setting $\Pi_t = \Pi$ for |t| < m. Say the decreasing case obtains if for each r the array $\{(\Pi^r)_t, t \in T\}$ introduced above is decreasing. The increasing case is defined analogously.

Plainly, $P(A|S_t)$ is a uniformly bounded martingale or reversed martingale according as the increasing or decreasing case obtains.

PROPOSITION. Suppose $m_r \varepsilon_r \to \infty$ and $\Sigma \varepsilon_r < \infty$. Then, in the increasing case, $P(A|S_t)$, $t \in T$, diverges with positive probability and, in the decreasing case, it diverges with probability one.

PROOF. Since the centers C' are independent, $\Sigma \varepsilon_r < \infty$ implies 0 < PA < 1. Consider first the decreasing case. For any increasing sequence $t(j) \in T$, $\bigcap \mathbb{S}_{t(j)}$ is part of the trivial tail sigma-field of the independent sequence of partitions Π^1 , Π^2 , ... because $m_r \to \infty$ and $(\Pi')_t$ is the trivial partition for $|t| > m_r$. Thus $P(A|\mathbb{S}_{t(j)})$ converges almost surely to the constant PA < 1. This, together with (2), implies that $P(A|\mathbb{S}_t)$ diverges almost surely. Consider now the increasing case. If $|t| > m_r$, then C_r , the center of Π' , is $(\Pi')_t$ -measurable, and hence \mathbb{S}_t -measurable. So if t(j) = (j, j), each C' and, hence, A, is measurable relative to the limit of the $\mathbb{S}_{t(j)}$. Therefore, by Levy's martingale convergence theorem, $P(A|\mathbb{S}_{t(j)})$ converges to zero almost everywhere off A (and to 1 almost everywhere on A). This, together with (2), implies that $P(A|\mathbb{S}_t)$ diverges almost everywhere on the complement of A.

As is easily verified, a uniformly bounded martingale parameterised by T which diverges almost surely is $M_t = \sum M_t^n/2^n$, where (M_t^1) , (M_t^2) , . . . is a sequence of independent copies of the martingale described above.

Of course, examples such as these indicate the necessity of some auxiliary condition to guarantee the almost sure convergence of multi-parameter martingales. The last word on this subject does not yet seem to have been said, but some such supplementary conditions can be found in the references.

REFERENCES

- 1. R. Cairoli, Une inégalité pour martingales à indices multiples et ses applications, Séminaire de Probabilités IV, Lecture Notes in Math., vol. 124, Springer-Verlag, Berlin, 1970, pp. 1-28.
 - 2. R. Cairoli and J. B. Walsh, Stochastic integrals in the plane, Acta Math. 134 (1975), 111-183.
 - 3. J. Dieudonné, Sur un théorème de Jessen, Fund. Math. 37 (1950), 242-248.
- 4. L. E. Dubins and J. W. Pitman, A pointwise ergodic theorem for the group of rational rotations, Trans. Amer. Math. Soc. 251 (1979), 299-308.

- 5. A. Gut, Convergence of reversed martingales with multidimensional indices, Duke Math. J. 43 (1976), 269-275.
- 6. K. Krickeberg, Convergence of martingales with a directed index set, Trans. Amer. Math. Soc. 83 (1976), 313-337.
- 7. J. Neveu, Discrete parameter martingales, North-Holland, Amsterdam; American Elsevier, New York, 1975.
- 8. R. T. Smythe, Sums of independent random variables on partially ordered sets, Ann. Probability 2 (1974), 906-917.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720

DEPARTMENT OF STATISTICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720