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EASY S AND L GROUPS
J. ROITMAN

ABSTRACT. We give a simple proof that the existence of strong S or L spaces
implies the existence of strong S or L groups; in fact the algebraic structure can be
varied quite a bit. We also construct, under CH, S and L groups whose squares are
neither S nor L.

0. Introduction and preliminaries. Some definitions. An S-space is regular and
hereditarily spearable but not hereditarily Lindelof; an L-space is regular and
hereditarily Lindel6f but not hereditarily separable. We say that a space has
countable spread if it has no uncountable discrete subspace. For a topological
property P, a space X is said to be strong P iff every finite product of copies of X
has property P. A canonical space is a subspace of 2 and if X = {f: a < w,} is
canonical then its dual is the space X? = { 8p: B < w,} where gg(a) = £,(B). The
dual is, of course, not unique and depends upon the enumeration of X.

It is well known that L-spaces exist iff there is a canonical L-space, and hence a
canonical L-space of cardinality &,. The same argument works for strong L-spaces
and strong S-spaces. It is easy to show that strong L-spaces exist iff there are
strong S-spaces. One proof is based on the observation that a canonical space of
cardinality &, is a strong L-space iff its dual is strong S. Another proof is given by
a theorem due to Zenor. Let H be separable Hilbert space and let C(X, H) be the
space of all continuous functions from X into H, equipped with the topology of
pointwise convergence. Combining a result of Zenor [Z] with standard techniques
from function spaces (e.g. [E, Proposition 26.9]) one can see that X is a strong
S-space iff C(X, H) is a strong L-space, and that X is a strong L-space iff C(X, H)
is a strong S-space.

Canonical strong S and L spaces exist under CH (modify the construction of
[HJ,]), in a forcing extension similar to that of [HJ,] (the cardinality is 2%), in
models obtained by adding one Cohen or random real [R] and hence in a direct
iterated property K extension (by [KT] such an extension does not destroy S or L
spaces in inner models extending the ground model and by an observation of
Kunen there is an inner model adding one Cohen real to the ground model). On
the other hand, strong S and L spaces do not exist under MA + - CH [K].

(1) If there is a strong S space, then there is a strong S group, i.e. a topological
group which is a strong S-space.

(2) If there is a strong L-space, then there is a strong L-group.
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Those assertions can be verified by applying Zenor’s results twice, e.g., if X is
strong S, then C(X, H) is strong L so that C(C(X, H), H) is a strong S-space, and
the latter function space is clearly a topological group. In this paper we give a
direct and simple proof of these two corollaries. Our proofs have the advantage
that they adapt easily to give other structures (e.g., nonabelian groups, topological
rings, Boolean rings) which are strong S or L space. Since, as noted above, the
existence of strong S or L spaces is known to be consistent in many models, this
gives two proofs of the consistency of strong S and L groups. There is yet a third
proof of the consistency of strong S-groups, due to Juhasz and Hajnal, obtained by
varying the constructions of [HJ,] and [HJ,]. We vary this construction to show
that although a topological group is closely allied to its product spaces, an S or L
group need not be strong, e.g. under CH there are S and L-groups whose squares
are not, respectively, S or L.

There are several questions that remain open. For example, we do not know if
there is a topological field which is an § or L space and we do not know whether
MA + - CH implies that no S or L groups can exist. (However, we give an
example of the sort of S or L group easily ruled out by MA + - CH.)

1. Strong S and L groups. If X* is a topological group, and X C X*, we prove
that cl(X), the closure of X under the group operation of X*, preserves the
following properties: strong countable spread, strong hereditary separability, strong
hereditary Lindelofness. This will follow from the following.

Observation. Each of the properties countable spread, hereditary separability,
and hereditary Lindelofness is preserved by continuous images and countable
union.

(Countable union here does not have to mean disjoint union; X is the countable
unionof (Y,:n < w}iff X = U ,_,Y,, each Y, a subspace of X.)

All we have to show, then, is that each [cl(X)]” is the countable union of
continuous images of suitable X*’s; since [cl(X)]" contains a copy of X, it is not
hereditarily Lindelf if X is not, and not hereditarily separable if X is not. So we will
have shown that X strong S = cl(X) is, X strong L = cl(X) is.

First we deal with cl(X). Let Y, = {(,I[,x™: x; € X, m; € {—1, 1}}. Thus cl(X)
= U, Y, Map X" onto Y, by {xk, . . ., x,_;> = II,,x™. @ is continuous.

Now we deal with [cl(X)]". Given ¢t = <k, .. ., k,_,) an increasing sequence of
integers, we define @,: X%-1*!  [cl(X)]" by

PRETS D < 1I X I xlrn.>

j<k0 kn—2<i<kn—l

Again, ¢, is continuous. Let Z, be the image of ¢,. Then [cl(X)]” is the countable
union of the Z’s, and we are done.

This construction has many variations. For example, if X is a canonical space
and G a group, f € X, a € G, we define af(a) = a if f(a) = 1; af(a) = 0 otherwise.
Then identifying the identity of G with 0, GX is defined as the closure of {af:
a € G, f € X} under the coordinatewise group operation, where the topology is as
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a subspace of G, G discrete. Then if G is countable nonabelian, and X is a strong
S or L group, GX is a strong S or L nonabelian group. On the other hand, if G is
the free group on the generators {q;: i < w} and X is canonical, X" is isomorphic
to a subspace of II,_,q4,X; hence under MA + -CH, GX is not an S or L
subspace of G*.

As another variation, we can get a ring whose additive group is generated by
multiplicative units by considering our strong S or L group as a subspace of
{—1, 1}*' under coordinatewise multiplication and then closing off under addition.

In another variation, adding the constant function 1 to our original cl(X) and
closing under difference, addition, and multiplication gets us a strong S or L
Boolean ring.

Finally, we note that if X is canonical with strong countable spread, and is not
the union of an S or L space, so is cl(X) (such an X exists under CH by adapting
the proof of [R,], noting that the Kunen line [JKR] may be made strong by an
adaptation similar to those of the next section, and a strong L space may be used
as the vertical space of the construction).

2. Groups whose squares are not S or L. We construct S and L groups whose
squares are not S or L by closely imitating the remarkably flexible construction of
Juhasz and Hajnal [HJ,), assuming CH. The reader familiar with their similar
constructions from ¥V = L (via Silver’s property W) and with forcing [HJ,] will
easily see that our adaptations work in those contexts as well.

A canonical set X is said to be hereditarily finally dense (HFD) iff for every
countable Y C X there is some a, so that if ¢ is a finite function from w, — a, into
2, then some f € Y extends ¢. If X, X’ are canonical, X = X’ (mod countable) iff
3yY: X —> X’ a set isomorphism so that Vf € X Ja; < w,;(f(B) = YWSN)(B) for all
B < a). HFD’s have the nice property that if two sets are equivalent mod
countable, and one is an HFD, so is the other. Hence if X is an uncountable HFD,
a little fiddling gives you a non-Lindelof subspace, whereas a A-system argument
shows that every HFD is hereditarily separable. So, if there is an HFD, then there
is an S space.

The dual of the HFD concept is more awkward to state. Since we follow the
Juhasz and Hajnal constructions so closely, we refer the reader to [HJ,] for the L
space case, and only indicate briefly our adaptation here.

How did Juhéasz and Hajnal construct an HFD from CH? First they named the
functions, { f,: a < w,}, although of course they did not yet know what they are.
Then, using CH, they enumerated all countable infinite subsets of these names as
{Y,: a <w}. Then, for each a < w;, 4, = {¢: i < w} enumerated all finite
functions from a into 2, and B, = {B<a: f,€ Yy=>y<a}. Fore €4, B €
B,, they let Y, , = {f € Yp: f D ¢}. Finally, C = {Y: Y infiniteand Y = Y, , for
some 8 € B,, ¢ € 4,}. The f’s were simultaneously built up by induction, where
at stage a each f (a) was determined, for y < a. The induction hypothesis at stage
a said that if ¥ € C, B <a, then both {fE Y: f>{B,0)} and {fE Y:
f D (B, 1)} were infinite. The construction was continued at stage a by enumerat-
ing C, as (Z;: i < w) where each Y € C, appeared as infinitely many Z;’s; then,
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one by one, the Z;’s were picked off so the induction hypothesis would be satisfied.
Thus an HFD was born.

To get an HFD group they added to the list of names {2, _,a;: a; < w,} where
addition is again coordinatewise mod 2. Then {Y,: a < w,;} enumerates all
countable infinite sets of these names, etc. The induction hypothesis is the same,
and addition will not get us into trouble-at any point in the ath stage of the
construction only finitely much has been determined, and so the Z; we are looking
at contains at least one sum mentioning functions whose ath coordinate is not yet
decided.

Define X to be a strong HFD if for any infinite Y a subset of any X" there is an
ay so that if ¢ is a finite function from w, — A4, into 2, for all i < n, then there is
{firi <n) € Y with f; D ¢, for all i < n. Then similar constructions give a strong
HFD, where now we add the names {{f,: i <n): n < w, &; < w,}. This construc-
tion is a slight strengthening of the one implicit in Galvin’s construction from CH
of a ccc space whose square is not ccc. (Note that implicit in [R,] is the proof that a
strong HFD gives the underlying graph of Galvin’s space.)

How do we get an HFD group whose square is not S? We proceed as in the
second variation with the following twist. Let a, = {fg , f, > where all indices are
distinct, and let u, = {{a, 0), <a, 0>)> (i.e. {f, g) € u, iff fla) = g(a) = 0). Be-
fore beginning our construction, we insist that

(e, € u,

Qa#B=a, & up
By the remark on equivalence mod countable, it suffices to insist that a # 3,
By Y« <B=a, & ug; and by the same remark, (1) is harmless. Similarly, by
playing with a suitable subset, we can ensure on HFD group is actually S.

In the actual construction, we must simultaneously assign values to f, , f, and
fs, + f,,- But this does no harm to the inductive hypothesis. Since either f; (B8) =
£.(B)=1or fs (B) #f,(B) is possible, a # B, we are free to let whichever of
Joo 1y ot fg + f, =0o0rlonp,as needed.

We remark that similar tricks give an HFD group X such that X" is S but X"*!
is not, for each n < w.

Finally, to construct an L group from CH whose square is not L, we imitate the
construction of [HJ,] dual to the HFD construction, using the same a priori
conditions as above, where u, is defined by u, = ((a, 0>, {a, 1>)>. Again, we
can modify the construction to get X an L group, X" is L,X"*'is not L, Vn < w.
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