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A PROVISIONAL SOLUTION TO THE NORMAL

MOORE SPACE PROBLEM

PETER J. NYIKOS

Abstract. The Product Measure Extension Axiom (PMEA), whose consistency

would follow from the existence of a strongly compact cardinal, implies that every

normalized collection of sets in a space of character less than the continuum is well

separated. Consistency of PMEA would thus solve many well-known problems of

general topology, including that of whether every first countable normal space is

collectionwise normal, as well as the normal Moore space problem.

1. Introduction. Ever since it was raised by F. Burton Jones in 1933 [14], the

problem of whether every normal Moore space is metrizable (often referred to

simply as "the normal Moore space problem") has been one of the most famous

and intensively researched problems in general topology. A few of the milestones in

the vast literature on this problem are: [14] Jones's own article, which includes the

proof that the axiom 2H° < 2Hl [now known to be independent of the usual

(Zermelo-Fraenkel with Choice) axioms of set theory] implies that every separable

normal Moore space is metrizable; [3] R. H. Bing's 1951 paper, which includes a

proof that every collectionwise normal Moore space is metrizable and the first

example of a normal space which is not collectionwise normal; [1], [2] the papers of

P. S. Alexandroff and A. V. Arhangel'skiï giving various characterizations of

metacompact Moore spaces (see §2) and raising the question of whether the normal

ones are metrizable; [12] R. W. Heath's proof that the existence of a separable

nonmetrizable normal Moore space is equivalent to the existence of a ß-set of real

numbers, from which also follows the existence of a metacompact nonmetrizable

normal Moore space; [16], [22] the Silver-Rothberger proof that the existence of

Q-sct is consistent with (and therefore independent of) the usual axioms of set

theory; and [9], [10] W. Fleissner's proof that GödePs Axiom of Constructibility

implies every normal Moore space-indeed, every normal space of character < c-is

collectionwise Hausdorff. A more detailed survey of the history of the problem

may be found in the articles of Mary Ellen Rudin [15], [16] and Franklin Tall [22].

Work on the normal Moore space problem has led to other questions which will

probably be of greater interest to a general audience than the original problem.

One is whether every first countable normal space is collectionwise normal. Since

Moore spaces are first countable, an affirmative solution to this problem would
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imply an affirmative solution to the normal Moore space problem, because of

Bing's theorem. Of course, Silver's result gives us models of set theory where the

solution to both problems is negative.

More generally, there is the problem [21] of whether every normalized collection

of sets in a first countable space is well separated. "Normalized" and "well

separated" (see definitions below) are such rudimentary concepts that this problem

belongs as much to set theory as it does to topology.

In this paper, I will show that the Product Measure Extension Axiom (PMEA),

defined below, gives an affirmative answer to all these problems, even if "of

character < c" is substituted for "first countable." Thus, if PMEA is consistent,

then the existence of a nonmetrizable normal Moore space, etc. is actually indepen-

dent of the usual axioms of set theory. Unfortunately, the consistency of PMEA

implies that consistency of there being a measurable cardinal. Therefore (cf. [7]) we

cannot hope to prove the consistency of PMEA within the usual set theory (ZFC).

It may even turn out that there are no measurable cardinals in any model of set

theory. However, as Kunen has shown, the consistency of PMEA would follow

from the existence of a strongly compact cardinal, whose consistency has been

conjectured by many set theorists. So we may regard the normal Moore space

problem as provisionally solved, always continuing the search for a more "secure"

model of set theory in which these consequences of PMEA hold. One could also

take the opposite approach, attempting to find a "real" example of a first countable

normal space which is not coUectionwise normal. This would prove that there

cannot be any strongly compact cardinals, and perhaps even that there are no

measurable cardinals! A further discussion of the status of PMEA appears in §3,

below.

2. The main results. For the definition of a Moore space, cf. [8], [15], or [20]. We

will not need it in this paper, only Bing's result that coUectionwise normal Moore

spaces are metrizable.

Definition 1. A coUection of (disjoint) subsets {Cy\y E T) of a topological

space X is well separated if there is a coUection of disjoint open subsets { U \y G T)

of X such that Cy c Uy for all y. It is normalized if for every subset A of T there

are disjoint open subsets U and V containing U {Cy\y G A} and U {Cy|y £ A}

respectively. It is discrete if each point of X has a neighborhood meeting at most

one of the sets Cy.

It is easy to see that every weU separated coUection is normalized, as is every

discrete coUection of sets in a normal space. (In fact, this characterizes normal

spaces.)

Definition 2. A space is coUectionwise normal if every discrete coUection of

closed sets is weU separated. [One gets an equivalent definition by dropping

"closed."]

Definition 3. A space is first countable if every point has a countable base of

neighborhoods. If k is a cardinal number, a space is of character < k if every point

has a base of cardinal < k for its neighborhoods.

The PMEA axiom has to do with the usual measure on the product of two-point
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sets. If one take the sets to be groups with the discrete topology, it is the usual Haar

measure [11]. An easy description is by way of basic closed-and-open sets. Let the

product be the set of all functions from a fixed set A into (0, 1}. Every basic open

set U is the set of all functions which take on a specified value at each element of a

specified finite subset F of A. The measure of U is then 1/2" where n = \F\.

Definition 4. Let c be the cardinality of the continuum. A measure fi on a set X

is c-additive if whenever & is a collection of fewer than c disjoint subsets of

X, u(U &) = 2^eS/iL4). IQ particular, all but countably many members of 6B are

of measure 0.

The Product Measure Extension Axiom (PMEA) is that the usual product

measure on 2X (where X is any cardinal number) can be extended to a c-additive

measure p defined on all subsets of 2X.

The proof of the first and most important theorem uses the huge variety of pairs

of disjoint open sets which "normalized" gives us. The underlying idea is to pick a

neighborhood of each point which is contained in some member of "enough" (in

the sense of measure) pairs, and hence disjoint from the other member. The

measure makes it possible to insure that if p G Ca, q E Cß, a ^ ß, then the

neighborhoods we choose for p and q will have an associated pair in common such

that the neighborhood of p is in one member of the pair, that of q is in the other.

Theorem 1 [PMEA]. Let X be a space of character < c. Every normalized

collection of subsets of X is well separated.

Proof. Let A be a space of character < c and let {Ca\a < X) be a normalized

family of subsets of X. Thus for each A cX, there exist disjoint open subsets UA

and VA of A" containing U [Ca\a E A) and U {Cja g A) respectively.

Let jit be a c-additive measure, extending the usual product measure on 2\ such

that p(&) exists for all 6£ c 2\ We identify X with the set of all ordinals whose

cardinal is < X. For each a E X, let ©„ = {/ G 2x|/(o) =1}. Note that p(2x) = 1

and p(<3>a - ®/s) = l/4 f°r ¡Ma, ß EX, a =£ ß.

Each / G 2X is the characteristic function of some subset Aj of X: A¡ = {a E

X\f(a) = 1}.
For a given a and a given p E Ca, let { Uy(p)\y < k^,} be a base of open sets for

the neighborhoods of p, with Kp < c. Let tt[p, y] = {/ G 2x\Uy(p) c UA or Uy(p)

C VA). For a fixed p, U {@-[p, y]\y < Kp} = 2\ This is because, for any given

/ G 2 , either UA or VA is an open set containing C„, hence there is a y such that

Uy(p) is contained in the one which contains Ca.

Because p is c-additive and {&[p, v]|y < i^,} is a collection of fewer than c

subsets that fill up 2X, the transfinite sequence {p(Uy<s&[p, y])|0 < S < i^}

converges monotonically to 1. By the principle of Archimedean order, there exists a

finite set of indices {yx(p),. .., y^(p)} such that p(U%.xâ[p, y¡(p)}) > 7/8. Let

yp be such that Uyp(p) c D ^xUy¡(p)(p). Then p(&[p, yp]) > 7/8.

If we do this for all a and/? G Ca, we then have p(@-[p, yp] n &[q, yq]) > 3/4

for all p, q. Suppose p E Ca, q G Cß, a =£ ß. Because pC$>a - <$)ß) = 1/4 there

exists / G &[p, yp] n &[q, yq] n (% - <&ß). From f(a) =l,f(ß) = 0 it follows
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that p G UAf,q G VA. And from / E &[p, yp] it then follows that Uy (p) G UA.

SimUarly, Uy (q) c VA. Therefore, Uy (p) n Uy (q) = 0.
Iq f Tp Tq

For each a, let Ua = U { Uy (p)\p G Ca}. Each Ua is an open set containing C„,

and by the preceding paragraph, Ua n Uß = 0 for a ¥= ß. Hence {Ca|a < X} is

well separated.

Incidentally, we have only used the fact that each p G Ca has a local base in X

of cardinal < c; the points not in U{Cja < A) can have any character one

pleases. Note also that X is not assumed to satisfy any separation axioms.

It is even possible to relax the condition that X be topological; the same proof

yields:

Theorem 2 [PMEA]. Let X be a closure space [4] such that about each point x of X

there is a base of cardinal < c for the neighborhoods of x. Let {Cy\y G T] be a

collection of (disjoint) subsets of X, such that for every subset AofT there are disjoint

neighborhoods N and M of U{Cy|yEA} and U {Cy\y E A}. Then there exist

disjoint sets {N \y G T) such that Ny is a neighborhood of Cy.

Problem 1. If TV and M can always be taken to be open, can the sets N also be

constructed to be open, assuming PMEA?

If the answer is yes, it would imply that every weakly first countable [17], [18]

normal space is coUectionwise normal under PMEA.

As it is, we have:

Theorem 3 [PMEA]. Every normal space of character < c is coUectionwise

normal.

Corollary 1 [PMEA]. Every normal Moore space is metrizable.

In [1], P. S. Alexandroff introduced the concept of a uniform base and showed

that a regular Hausdorff space is a metacompact Moore space if, and only if, it has

a uniform base. (See also [8], where "uniform" is caUed "point-regular" and

"metacompact" is caUed "weakly paracompact" or [12], where "metacompact" is

caUed "pointwise paracompact.") We now have:

Corollary 2 [PMEA]. Every normal T2 space with a uniform base is metrizable.

Another characterization is that of Arhangel'skiï [2]: the metacompact Moore

spaces are precisely the regular T2 images of metric spaces under compact open

maps. (A map/: X -» Y is compact if f~x{y) is compact for each^ E Y.)

Corollary 3 [PMEA]. Metric spaces are preserved under compact open maps if

the image space is normal and T2.

3. The status of PMEA. The best consistency result on PMEA has been obtained

by K. Kunen, who has shown the more general result:

Theorem 4. If it is consistent that there exist a strongly compact cardinal [7], then

there is a model in which the following axiom holds: whenever (X, S,/x) is a

probability space and S is a c-complete algebra of subsets of X, and ¡i is a c-additive
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measure on S, then ¡i can be extended to a c-additive measure on 9(X). (This is

sometimes called "Fisher's Axiom.")

Kunen constructs his model by starting with one which has a strongly compact

cardinal k, and "adds k random reals" to the model, so that in the new model k

(reinterpreted as an ordinal number-it wiU no longer be strongly compact!) is the

cardinality of the continuum. His proof is a modification of Solovay's in [19].

Kunen also has a shorter and more direct proof that PMEA holds in this model.

On the other hand, R. M. Solovay has shown [19] that the foUowing two axioms

are equiconsistent, i.e. if there is a model of one there is a model of the other:

A. ZFC + "there exists a measurable cardinal."

B. ZFC + " there is a c-additive measure ¡i on the real line R extending the usual

Lebesgue measure and defined on all subsets of R."

Now, when X = w0, 2X is homeomorphic to the Cantor set, and the product

measure can be tied together with the Lebesgue measure on R by using the Cantor

function. So another equivalent condition is

C. ZFC + "PMEA holds for X = co0."

So the status of PMEA is at least as doubtful as that of measurable cardinals.

4. Other consequences. In survey papers lüce [13], one can find numerous

metrization theorems involving coUectionwise normality, a base axiom implying

first countability (such as "point-countable base" or "50-base"), and a generaliza-

tion of metrizability. We can drop the word "coUectionwise" from these theorems

under PMEA because of Theorem 3. Actually, most such results foUow from

CoroUary 1 as weU, because if we replace "normal" by "regular" we obtain a

condition which implies the space is a Moore space. For example, most such

metrization theorems in [13] can now be obtained from a recent theorem by

Chaber and an older result of Wicke and Worrell.

Theorem A [5]. Every monotonie ß-space with a 89-base has a base of countable

order.

Theorem B [23]. A regular T2 space is a Moore space if, and only if, it is

9-refinable and has a base of countable order.

From another result of Wicke and WorreU, we obtain:

Theorem 5 [PMEA]. Every normal, 9-refinable space of character < c is para-

compact.

Proof. Every coUectionwise normal, 0-refinable space is paracompact [23].

One of the more important generalizations of metric spaces is that of semimetriz-

able spaces: those admitting a symmetric distance d such that d(x,y) = 0 if and

only if x = y, and such that x is in the closure of A if and only if inf{d(x, y)\y G

A) =0.

Theorem 6 [PMEA]. Every normal, semimetrizable space is paracompact.
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Proof. A space is a semimetrizable space if, and only if, it is first countable and

semistratifiable, and every semistratifiable space is subparacompact [6], hence

0-refinable [23].

In Theorem 6, "paracompact" cannot be improved to "metrizable." For exam-

ple, the bowtie space in [20] is semimetrizable and paracompact, even Lindelöf, but

not metrizable. Of course, the theorem does give us a generalization (under PMEA)

of A. H. Stone's classic result that every metrizable space is paracompact.

5. Concluding remarks. All of the theorems and corollaries obtained in this paper

from PMEA become false under Martin's Axiom plus the negation of the con-

tinuum hypothesis. The metacompact nonmetrizable normal Moore space de-

scribed in [16, p. 21] that one gets in these models is a counterexample to every one

of them, including the metrization theorems one gets by dropping "collectionwise"

from the theorems in [13].

The condition "character < c" in Theorem 1 is the best possible, cardinalwise.

W. Fleissner has constructed (using no set-theoretic axioms beyond ZFC) a space

called "George" which is normal and collectionwise Hausdorff, but not collection-

wise normal, and its character is c [16]. However, the following problem also

remains open.

Problem 2. Let A" be a normal space in which every point has a totally ordered

local base. Does PMEA imply that X is collectionwise normal?
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