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DIFFERENTIABLE DECOMPOSITIONS OF MANIFOLDS
INTO TOTALLY C *-PATH DISCONNECTED SUBSETS

M. V. MIELKE

ABSTRACT. For C*-manifolds M, N, the set of all C*-maps M — N with totally
C®-path disconnected fibers is shown to be dense in the set of all C*-maps
M > N, if dim N > 0.

1. Introduction. R. D. Anderson [1] in 1950, and Lewis and Walsh [3] more
recently, have given a continuous decomposition of the plane into pseudo-arcs.
This gives a nontrivial example of a continuous map of the plane to itself with
totally path disconnected fibers (= point inverses). Such maps were called a-light
by Ungar [7]. One can consider a differentiable analogue of such maps and seek a
nontrivial C ®-decomposition of a C *-manifold into totally C *-path disconnected
subsets. But, if by a C ®-decomposition of M we mean a decomposition that can be
induced by a C®-map of M to some C*-manifold N, then, as a consequence of
Sard’s theorem [6], “most” elements of the decomposition will be C ®-submanifolds
of dimension dim M — dim N, and thus will not be totally C ®-path disconnected
if dim M > dim N. However, if we consider C°-decompositions, where s < oo,
then the situation is different. In this case we show, using results of [4], not only the
existence of C*-decompositions into totally C*-path disconnected elements, but
that “many” C°-decompositions are of this type. More explicitly, and more
generally, we show that for any integer s > 0 and for any C ®-manifolds M and N
with dim N > 0, the set D(M, N) of all C°-maps M — N with totally C"-path
disconnected fibers is dense, relative to the fine C!-topology, in the set C*(M, N)
of all C*-maps M — N, if r is sufficiently large.

2. Main results. Define L: R - {0, 1,...} by L(p) = {logy(p)}ifp > 1,and 0
otherwise, where {x} = least integer > x.

2.1 THEOREM. If N, M are C *-manifolds of dimension n > 0 and m respectively
and s is a positive integer then D(M, N)= C*(M, N), where ~ denotes closure
relative to the fine C'-topology and r = s + 1 + max{L(m — 1), L(m/n)}.

Since D;(M, N) = C°(M, N) if m = 0 and, by an easy calculation, max{L(m —
1), L(m/n)} <m — 1, if m > 0, 2.1 clearly implies:

2.2 COROLLARY. D(M,N)=D;(M,N)= C*(M,N) fors=1,2,..., ifr >s
+ dim M and dim N > 0.
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Theorem 2.1 readily follows from the next two propositions involving the sets
E*(M, N) = {f|f € C*(M, N), such that for all C’-paths 8 in M, with a non-
empty, connected, open subset of R as domain, f8 € C* implies 8 is constant}
since E; C E]ifr >r,.

2.3 PRrOPOSITION. For r >s, D(M,N)= C’(M,N) if E}(R™ R") #+J #*
E,‘(R'"", R), where m = dim M > 0and n = dim N > 0.

2.4 PROPOSITION. ES(R™, R") # B ifr=s+ 1+ L(m/n) and n > 0.

To show 2.3 some preliminary results are necessary. Define a subset K of M to
be an r-set if any C’-path in K is constant.

2.5 LeMMA. (a) If {K;} is a locally finite family of closed r-sets in M then U K, is
also a closed r-set. (b) If K is a closed r-set in M and f € C*(M, N) restricts to a
map in EX(M — K, N) then f € EX(M,N).(c)Ifr > s, EJ(R™, R) #+ J,and x is a
point in an open subset U of R™*, then there is an open set V,x € V. c V c U,
such that 8V =V — V is an rset. (d) If r>s,f € C**(M, R"), g €
C®(M, [0, 1)), and h € E(M, R") then (f + gh) € E*(g~'(0, 1], R™).

ProoF. (a) Since {K;} is locally finite, it suffices to prove the result for two
closed r-sets K,, K,. For (: U K=K, U K,) € C",let U, = B~ (K- K))U
(K — K3)) and U, = interior (U — U,). Since (K — K)) C K,, (K — K,) Cc K|, (K
- K)N (K- K, =6, and B(U,) C K, n K, C K, the assumptions imply that
the continuous map B is locally constant on the dense subset U, U U, of the
connected set U, i.e., B is constant. (b) For (8: U— M) € C",let U, = B~ (M —
K), U, = interior(U — U,) and proceed as in (a), noting that f3 € C**' implies 8
is locally constant on U,. (c¢) If E’(R™, R) # <& then clearly there is a g €
E’(R™, (0, 1)). Further, if r € R — {0}, then the image K(f) of the map ¢:
R™ > R™*! given by

Xy ooy X)) = (Xps oo X 18(X s e oy X))y Xy ey X)),
i=12...,m+1],

is a closed r-set in R™*!. Indeed, if B is a C"-path in K(¢) then #(d,8) = B € C”
C C**!, where d: R™*' - R™ is deletion of the ith coordinate. Since ¢ is clearly
in E(R™, R™") and 4B € C’, it follows that d,8, and consequently B, is
constant. If ¢ > 0 then K = U ™' (K,(¢) U K(-¢)) is a closed r-set in R™*! by
(a) and the component V of the origin in R™*! — K is such that §V C K and
V C (-¢, €)™, This clearly implies (c). (d) If B8 is a C’-path in g~!(0, 1] with
(f+ gh)B = a € C**!, then hB = (a — fB)/(gB) € C**! and thus B is constant.
This shows 2.5.

For an open subset U of R™ and f € C*(U, R") define |f|: U — R by | f|(x) =
the maximum of the absolute value of all the partials of order < 1 at x of the
n-component functions of f. Clearly | f| is continuous and if f = g on K C U then
| f] = | g on the interior of K.
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PROOF OF 2.3. It suffices to show that C**'(M, N) c E'(M, N ) since Ef(M, N)
C D)(M, N) and, by 42 of [5], C**'(M,N)= C(M, N). Given f €
C**!(M, N), it is possible, with the aid of 2.5(c), to find C ®-coordinate systems
{Us b}, {W,, k;} in M, N respectively together with an open cover {¥;} of M for
which f(U) c W,, ¥, c U, V, is compact, 8V is an r-set and {¥;} is locally finite,
i € I.If, for a family 8, = {§; > 0} of constants and a well ordering of the index
set I, there is a family p, € C*(M, N) such that,

() p; = pjon V, forj <i,

@p,=fon M — K, where K, = U 1,V

@) [(p); = (N)] <8/2 on KV, 0 ¥)) for i < j, where (), = KOk,
then the unique C*-map p: M — N with p = p, on V; clearly satisfies |(p);, — (f);|
< 8, on h(¥,) by (3),;- Therefore, by 3.6 of [5], p is in the 8 ,-neighborhood of f. To
show f € Ef(M, N ), then, it suffices to construct such a family for which p €
E’(M, N). To this end assume that the family {p,} is given for all k <i (take
Do = f, K, = ) and define p, as follows. By (1) and (2) there is a unique C°-map
pi: M — N that coincides with p, and fon V¥, and on M — K respectively, where
K/ = Ui;Vi- Let g = (p); + eag: h(U) > k(W), where o €
C®(h(U), [0, 1]) is such that o '(0) = k(U N (M — (K, — K)))) (e, exists by
[2, p. 24]) and where g, € E’(h(U)), R"). Since p; = f on (M — K/) D ((K K
N V) = K,; it follows that 6;; = (k;” lqihi)j — () = kil(f); + easglhy; — ki())hy;
= y,; on h(K,;), where ();; = () )j". Consequently |6,;| = [¢,;| on A( U) Since
all of the functions making up y;; together with all their partials of order < 1 are
continuous and since K;; is compact, it is clear, from the form of Yij» that the
constant ¢ > 0 can be plcked so that |y;;| < §;/2 on h( ;;)- Further, since {V} is
locally finite, the set J = {j|i < j, K;; # D} is finite and so ¢ can be chosen so that
(4); 10,1 < 8;/2 on h(K,)) for all j € J. Finally, take ¢ smaller, if necessary, in order
that ¢;(h(V})), and thus ¢,(h(U))), is contained in k,(W,). The map

p! onM -V,
& ki 'g:h; on U

1

is clearly in C*(M, N) and satisfies condition (1) since p, = p/ on (M — (K; — K))
D V.. Further, since M — K,=(M - V)N (M - K/),p, =p;=f on M - K,
and condition (2) holds. Since h(V, N V; N V) C h(V,, N V) N h(V, N V), con-
ditions (1) and (3),; imply that |(p;); — (f);| < §;/2 on h(V, N V; N V) and thus
also on h(K/ N V; N V)). By definition, (p;); — (f); = 6, on K;; C U; and, by
@y, (), — (/)] < 8,/2 on h(K,). Since (K; 1 ¥, N ¥;) U (K, is dense in ¥; N
V,, condition (3),; also holds. Finally, if we assume inductively that p, restricts to a
map in E;(V,, N) for k <, then the same is true for k = i. Indeed, since p; = f on
(M - K/)> (K, — K/) = b7 "(«a™'(0, 1]), 2.5(d) implies that ¢, € E¥(a™Y(0, 1],
k,(W;)) and consequently, since p, = k;”'g;h; on U, O (K; — K}), that p, restricts to
a map in E*(K, — K/, N). Since p, = p, on V,,p, also restricts to a map in
E(K/ N V;, N). Lemma 2.5(b) then implies that p; restricts to a map in E}(V;, N)
since, by 2.5(a), [V, — (K/ N V;) U (K — K)] C (U ;8¥,) N V; is an r-set. Since
p=p;onV,p € E(M, N)and 2.3 is proved.
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In the terminology of §4 of [4], the set of (r, s)-maps from R™ to R" coincides
with the set E(R™, R"). Proposition 4.3 of [4], showing the existence of (r, s)-maps
if r = s+ 1+ L(m/n), then gives 2.4 and consequently 2.1.

REMARK. The conditions in Theorem 2.1 subsume r >s. If r < s the rank
theorem [2, p. 273] readily implies that D/(M, N) = & if dim M > dim N. This
follows since then for any C*-map f: M — N there are C*-coordinate patches
centered at p and f( p) respectively relative to which f has the form f(x,, . . ., x,,) =
(X4 ...,%,0,...,0) where p is a point of M where the rank k of fis maximum
and where m = dim M. Since k < dim N < m the fiber f~!(f(p)) contains the
C*-path B(t) = (0, ..., ¢). If further, s > dim M — dim N > 0 then the C*-ver-
sion of Sard’s theorem [6, p. 47] implies that “almost all” fibers of f support
nontrivial C*-paths.
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