DIFFERENTIABLE DECOMPOSITIONS OF MANIFOLDS INTO TOTALLY C^{∞} -PATH DISCONNECTED SUBSETS

M. V. MIELKE

ABSTRACT. For C^{∞} -manifolds M, N, the set of all C^{s} -maps $M \to N$ with totally C^{∞} -path disconnected fibers is shown to be dense in the set of all C^{s} -maps $M \to N$, if dim N > 0.

- 1. Introduction. R. D. Anderson [1] in 1950, and Lewis and Walsh [3] more recently, have given a continuous decomposition of the plane into pseudo-arcs. This gives a nontrivial example of a continuous map of the plane to itself with totally path disconnected fibers (= point inverses). Such maps were called a-light by Ungar [7]. One can consider a differentiable analogue of such maps and seek a nontrivial C^{∞} -decomposition of a C^{∞} -manifold into totally C^{∞} -path disconnected subsets. But, if by a C^{∞} -decomposition of M we mean a decomposition that can be induced by a C^{∞} -map of M to some C^{∞} -manifold N, then, as a consequence of Sard's theorem [6], "most" elements of the decomposition will be C^{∞} -submanifolds of dimension dim M – dim N, and thus will not be totally C^{∞} -path disconnected if dim $M > \dim N$. However, if we consider C^s -decompositions, where $s < \infty$, then the situation is different. In this case we show, using results of [4], not only the existence of C^s -decompositions into totally C^{∞} -path disconnected elements, but that "many" C^s-decompositions are of this type. More explicitly, and more generally, we show that for any integer s > 0 and for any C^{∞} -manifolds M and N with dim N > 0, the set $D_r^s(M, N)$ of all C^s -maps $M \to N$ with totally C^r -path disconnected fibers is dense, relative to the fine C^1 -topology, in the set $C^s(M, N)$ of all C^s -maps $M \to N$, if r is sufficiently large.
- **2. Main results.** Define $L: R \to \{0, 1, ...\}$ by $L(p) = \{\log_2(p)\}$ if $p \ge 1$, and 0 otherwise, where $\{x\} = \text{least integer} \ge x$.
- 2.1 THEOREM. If N, M are C^{∞} -manifolds of dimension n > 0 and m respectively and s is a positive integer then $\overline{D_r^s(M,N)} = C^s(M,N)$, where $\overline{} = C^s(M,N)$, where $\overline{} = C^s(M,N)$, where $\overline{} = C^s(M,N)$.

Since $D_s^s(M, N) = C^s(M, N)$ if m = 0 and, by an easy calculation, $\max\{L(m-1), L(m/n)\} \le m - 1$, if m > 0, 2.1 clearly implies:

2.2 COROLLARY. $\overline{D_r^s(M,N)} = \overline{D_\infty^s(M,N)} = C^s(M,N)$ for $s=1,2,\ldots,if \ r \geqslant s$ + dim M and dim N>0.

Received by the editors March 28, 1979.

AMS (MOS) subject classifications (1970). Primary 57D35; Secondary 54C10.

Key words and phrases. Continuous decomposition, differentiable decomposition, totally C^3 -path disconnected fiber.

440 M. V. MIELKE

Theorem 2.1 readily follows from the next two propositions involving the sets $E_r^s(M, N) = \{f | f \in C^s(M, N), \text{ such that for all } C^r\text{-paths } \beta \text{ in } M, \text{ with a nonempty, connected, open subset of } R \text{ as domain, } f\beta \in C^s \text{ implies } \beta \text{ is constant} \}$ since $E_{r_0}^s \subset E_r^s$ if $r > r_1$.

- 2.3 PROPOSITION. For r > s, $\overline{D_r^s(M, N)} = C^s(M, N)$ if $E_r^s(R^m, R^n) \neq \emptyset \neq E_r^s(R^{m-1}, R)$, where $m = \dim M > 0$ and $n = \dim N > 0$.
 - 2.4 Proposition. $E_r^s(R^m, R^n) \neq \emptyset$ if r = s + 1 + L(m/n) and n > 0.

To show 2.3 some preliminary results are necessary. Define a subset K of M to be an r-set if any C'-path in K is constant.

2.5 Lemma. (a) If $\{K_i\}$ is a locally finite family of closed r-sets in M then $\bigcup_i K_i$ is also a closed r-set. (b) If K is a closed r-set in M and $f \in C^s(M, N)$ restricts to a map in $E_r^s(M-K,N)$ then $f \in E_r^s(M,N)$. (c) If r > s, $E_r^s(R^m,R) \neq \emptyset$, and x is a point in an open subset U of R^{m+1} , then there is an open set V, $x \in V \subset \overline{V} \subset U$, such that $\delta V = \overline{V} - V$ is an r-set. (d) If r > s, $f \in C^{s+1}(M,R^n)$, $g \in C^\infty(M,[0,1])$, and $h \in E_r^s(M,R^n)$ then $(f+gh) \in E_r^s(g^{-1}(0,1],R^n)$.

PROOF. (a) Since $\{K_i\}$ is locally finite, it suffices to prove the result for two closed r-sets K_1 , K_2 . For $(\beta \colon U \to K = K_1 \cup K_2) \in C^r$, let $U_1 = \beta^{-1}((K - K_1) \cup (K - K_2))$ and $U_2 =$ interior $(U - U_1)$. Since $(K - K_1) \subset K_2$, $(K - K_2) \subset K_1$, $(K - K_1) \cap (K - K_2) = \emptyset$, and $\beta(U_2) \subset K_1 \cap K_2 \subset K_1$ the assumptions imply that the continuous map β is locally constant on the dense subset $U_1 \cup U_2$ of the connected set U, i.e., β is constant. (b) For $(\beta \colon U \to M) \in C^r$, let $U_1 = \beta^{-1}(M - K)$, $U_2 =$ interior $(U - U_1)$ and proceed as in (a), noting that $f\beta \in C^{s+1}$ implies β is locally constant on U_1 . (c) If $E_r^s(R^m, R) \neq \emptyset$ then clearly there is a $g \in E_r^s(R^m, (0, 1))$. Further, if $t \in R - \{0\}$, then the image $K_i(t)$ of the map t_i : $R^m \to R^{m+1}$ given by

$$t_i(x_1, \ldots, x_m) = (x_1, \ldots, x_{i-1}, tg(x_1, \ldots, x_n), x_i, \ldots, x_m),$$

 $i = 1, 2, \ldots, m+1,$

is a closed r-set in R^{m+1} . Indeed, if β is a C^r -path in $K_i(t)$ then $t_i(d_i\beta) = \beta \in C^r \subset C^{s+1}$, where $d_i \colon R^{m+1} \to R^m$ is deletion of the *i*th coordinate. Since t_i is clearly in $E_r^s(R^m, R^{m+1})$ and $d_i\beta \in C^r$, it follows that $d_i\beta$, and consequently β , is constant. If $\varepsilon > 0$ then $K = \bigcup_{i=1}^{m+1} (K_i(\varepsilon) \cup K_i(-\varepsilon))$ is a closed r-set in R^{m+1} by (a) and the component V of the origin in $R^{m+1} \to K$ is such that $\delta V \subset K$ and $V \subset (-\varepsilon, \varepsilon)^{m+1}$. This clearly implies (c). (d) If β is a C^r -path in $g^{-1}(0, 1]$ with $(f + gh)\beta = \alpha \in C^{s+1}$, then $h\beta = (\alpha - f\beta)/(g\beta) \in C^{s+1}$ and thus β is constant. This shows 2.5.

For an open subset U of R^m and $f \in C^s(U, R^n)$ define |f|: U - R by |f|(x) = the maximum of the absolute value of all the partials of order ≤ 1 at x of the n-component functions of f. Clearly |f| is continuous and if f = g on $K \subset U$ then |f| = |g| on the interior of K.

PROOF OF 2.3. It suffices to show that $C^{s+1}(M, N) \subset \overline{E_r^s(M, N)}$ since $E_r^s(M, N) \subset D_r^s(M, N)$ and, by 4.2 of [5], $C^{s+1}(M, N) = C^s(M, N)$. Given $f \in C^{s+1}(M, N)$, it is possible, with the aid of 2.5(c), to find C^{∞} -coordinate systems $\{U_i, h_i\}, \{W_i, k_i\}$ in M, N respectively together with an open cover $\{V_i\}$ of M for which $f(U_i) \subset W_i$, $\overline{V_i} \subset U_i$, $\overline{V_i}$ is compact, δV_i is an r-set and $\{\overline{V_i}\}$ is locally finite, $i \in I$. If, for a family $\delta_* = \{\delta_i > 0\}$ of constants and a well ordering of the index set I, there is a family $p_i \in C^s(M, N)$ such that,

(1) $p_i = p_j$ on V_j for j < i,

(2) $p_i = f$ on $M - K_i$, where $K_i = \bigcup_{k \le i} V_k$,

(3) $|(p_i)_j - (f)_j| < \delta_j/2$ on $h_j(V_i \cap V_j)$ for $i \le j$, where $()_i = k_i()h_i^{-1}$, then the unique C^s -map $p: M \to N$ with $p = p_i$ on V_i clearly satisfies $|(p)_i - (f)_i|$ $<\delta_i$ on $h_i(\overline{V_i})$ by $(3)_{ii}$. Therefore, by 3.6 of [5], p is in the δ_* -neighborhood of f. To show $f \in E_r^s(M, N)$, then, it suffices to construct such a family for which $p \in$ $E_r^s(M, N)$. To this end assume that the family $\{p_k\}$ is given for all k < i (take $p_0 = f$, $K_0 = \emptyset$) and define p_i as follows. By (1) and (2) there is a unique C^s -map $p_i': M \to N$ that coincides with p_k and f on V_k and on $M - K_i'$ respectively, where $K_i' = \bigcup_{k < i} V_k$. Let $q_i = (p_i')_i + \varepsilon \alpha_i g_i$: $h_i(U_i) \to k_i(W_i)$, where $\alpha_i \in$ $C^{\infty}(h_i(U_i), [0, 1])$ is such that $\alpha_i^{-1}(0) = h_i(U_i \cap (M - (K_i - \overline{K}_i)))$ (α_i exists by [2, p. 24]) and where $g_i \in E_r^s(h_i(U_i), R^n)$. Since $p_i' = f$ on $(M - K_i') \supset ((K_i - \overline{K}_i'))$ $\cap V_i$) = K_{ij} it follows that $\theta_{ij} = (k_i^{-1}q_ih_i)_i - (f)_j = k_{ij}[(f)_i + \epsilon\alpha_ig_i]h_{ij} - k_{ij}(f)_ih_{ij}$ $=\psi_{ij}$ on $h_j(K_{ij})$, where $()_{ij}=()_i()_j^{-1}$. Consequently $|\theta_{ij}|=|\psi_{ij}|$ on $h_j(\overline{K}_{ij})$. Since all of the functions making up ψ_{ij} together with all their partials of order ≤ 1 are continuous and since K_{ij} is compact, it is clear, from the form of ψ_{ij} , that the constant $\varepsilon > 0$ can be picked so that $|\psi_{ij}| < \delta_i/2$ on $h_i(\overline{K}_{ij})$. Further, since $\{V_i\}$ is locally finite, the set $J = \{j | i \le j, K_{ij} \ne \emptyset\}$ is finite and so ε can be chosen so that (4)_i $|\theta_{ij}| < \delta_i/2$ on $h_i(K_{ij})$ for all $j \in J$. Finally, take ε smaller, if necessary, in order that $q_i(h_i(V_i))$, and thus $q_i(h_i(U_i))$, is contained in $k_i(W_i)$. The map

$$p_i = \begin{cases} p_i' & \text{on } M - V_i, \\ k_i^{-1} q_i h_i & \text{on } U_i \end{cases}$$

is clearly in $C^s(M, N)$ and satisfies condition (1) since $p_i = p_i'$ on $(M - (K_i - \overline{K_i'})) \supset V_k$. Further, since $M - K_i = (M - V_i) \cap (M - K_i')$, $p_i = p_i' = f$ on $M - K_i$ and condition (2) holds. Since $h_j(V_k \cap V_i \cap V_j) \subset h_j(V_k \cap V_i) \cap h_j(V_k \cap V_j)$, conditions (1) and (3) $_{kj}$ imply that $|(p_i)_j - (f)_j| < \delta_j/2$ on $h_j(V_k \cap V_i \cap V_j)$ and thus also on $h_j(K_i' \cap V_i \cap V_j)$. By definition, $(p_i)_j - (f)_j = \theta_{ij}$ on $K_{ij} \subset U_i$ and, by (4) $_j$, $|(p_i)_j - (f)_j| < \delta_j/2$ on $h_j(K_{ij})$. Since $(K_i' \cap V_i \cap V_j) \cup (K_{ij})$ is dense in $V_i \cap V_j$, condition (3) $_{ij}$ also holds. Finally, if we assume inductively that p_k restricts to a map in $E_r^s(V_k, N)$ for k < i, then the same is true for k = i. Indeed, since $p_i' = f$ on $(M - K_i') \supset (K_i - \overline{K_i'}) = h_i^{-1}(\alpha^{-1}(0, 1])$, 2.5(d) implies that $q_i \in E_r^s(\alpha^{-1}(0, 1], k_i(W_i))$ and consequently, since $p_i = k_i^{-1}q_ih_i$ on $U_i \supset (K_i - \overline{K_i'})$, that p_i restricts to a map in $E_r^s(K_i' \cap V_i, N)$. Since $p_i = p_k$ on V_k , p_i also restricts to a map in $E_r^s(K_i' \cap V_i, N)$. Lemma 2.5(b) then implies that p_i restricts to a map in $E_r^s(V_i, N)$ since, by 2.5(a), $[V_i - (K_i' \cap V_i) \cup (K - \overline{K_i'})] \subset (\bigcup_{k < i} \delta V_k) \cap V_i$ is an r-set. Since $p = p_i$ on V_i , $p \in E_r^s(M, N)$ and 2.3 is proved.

442 M. V. MIELKE

In the terminology of §4 of [4], the set of (r, s)-maps from R^m to R^n coincides with the set $E_r^s(R^m, R^n)$. Proposition 4.3 of [4], showing the existence of (r, s)-maps if r = s + 1 + L(m/n), then gives 2.4 and consequently 2.1.

REMARK. The conditions in Theorem 2.1 subsume r > s. If r < s the rank theorem [2, p. 273] readily implies that $D_s^r(M, N) = \emptyset$ if dim $M > \dim N$. This follows since then for any C^s -map $f: M \to N$ there are C^s -coordinate patches centered at p and f(p) respectively relative to which f has the form $f(x_1, \ldots, x_m) = (x_1, \ldots, x_k, 0, \ldots, 0)$ where p is a point of M where the rank k of f is maximum and where $m = \dim M$. Since $k \le \dim N < m$ the fiber $f^{-1}(f(p))$ contains the C^s -path $\beta(t) = (0, \ldots, t)$. If further, $s > \dim M - \dim N > 0$ then the C^s -version of Sard's theorem [6, p. 47] implies that "almost all" fibers of f support nontrivial C^s -paths.

REFERENCES

- 1. R. D. Anderson, On collections of pseudo-arcs, Bull. Amer. Math. Soc. 56 (1950), 350.
- 2. J. Dieudonne, Foundations of modern analysis, Academic Press, New York, 1960.
- 3. W. Lewis and J. J. Walsh, A continuous decomposition of the plane into pseudo-arcs, Houston J. Math. 4 (1978), 209-222.
- 4. M. V. Mielke, Sectional representation of multitopological spaces relative to a family of smoothness categories, Illinois J. Math. 23 (1979), 58-70.
- 5. J. R. Munkres, Elementary differential topology, Ann. of Math. Studies, no. 54, Princeton, N. J., 1963.
 - 6. S. Sternberg, Lectures on differential geometry, Prentice-Hall, Englewood Cliffs, N. J., 1964.
- 7. G. S. Ungar, Fiber spaces with totally path disconnected fiber, Ann. of Math. Studies, no. 60, Princeton, N. J., 1960, pp. 235-240.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MIAMI, CORAL GABLES, FLORIDA 33124