DIFFERENTIABLE DECOMPOSITIONS OF MANIFOLDS INTO TOTALLY C^{∞}-PATH DISCONNECTED SUBSETS

M. V. MIELKE
> AbSTRACT. For C^{∞}-manifolds M, N, the set of all C^{s}-maps $M \rightarrow N$ with totally C^{∞}-path disconnected fibers is shown to be dense in the set of all C^{s}-maps $M \rightarrow N$, if $\operatorname{dim} N>0$.

1. Introduction. R. D. Anderson [1] in 1950, and Lewis and Walsh [3] more recently, have given a continuous decomposition of the plane into pseudo-arcs. This gives a nontrivial example of a continuous map of the plane to itself with totally path disconnected fibers (= point inverses). Such maps were called a-light by Ungar [7]. One can consider a differentiable analogue of such maps and seek a nontrivial C^{∞}-decomposition of a C^{∞}-manifold into totally C^{∞}-path disconnected subsets. But, if by a C^{∞}-decomposition of M we mean a decomposition that can be induced by a C^{∞}-map of M to some C^{∞}-manifold N, then, as a consequence of Sard's theorem [6], "most" elements of the decomposition will be C^{∞}-submanifolds of dimension $\operatorname{dim} M-\operatorname{dim} N$, and thus will not be totally C^{∞}-path disconnected if $\operatorname{dim} M>\operatorname{dim} N$. However, if we consider C^{s}-decompositions, where $s<\infty$, then the situation is different. In this case we show, using results of [4], not only the existence of C^{s}-decompositions into totally C^{∞}-path disconnected elements, but that "many" C^{s}-decompositions are of this type. More explicitly, and more generally, we show that for any integer $s>0$ and for any C^{∞}-manifolds M and N with $\operatorname{dim} N>0$, the set $D_{r}^{s}(M, N)$ of all C^{s}-maps $M \rightarrow N$ with totally C^{r}-path disconnected fibers is dense, relative to the fine C^{1}-topology, in the set $C^{s}(M, N)$ of all C^{s}-maps $M \rightarrow N$, if r is sufficiently large.
2. Main results. Define $L: R \rightarrow\{0,1, \ldots\}$ by $L(p)=\left\{\log _{2}(p)\right\}$ if $p \geqslant 1$, and 0 otherwise, where $\{x\}=$ least integer $\geqslant x$.
2.1 Theorem. If N, M are C^{∞}-manifolds of dimension $n>0$ and m respectively and s is a positive integer then $D_{r}^{s}(M, N)=C^{s}(M, N)$, where - denotes closure relative to the fine C^{1}-topology and $r=s+1+\max \{L(m-1), L(m / n)\}$.

Since $D_{s}^{s}(M, N)=C^{s}(M, N)$ if $m=0$ and, by an easy calculation, $\max \{L(m-$ 1), $L(m / n)\} \leqslant m-1$, if $m>0,2.1$ clearly implies:
2.2 Corollary. $\overline{D_{r}^{s}(M, N)}=\overline{D_{\infty}^{s}(M, N)}=C^{s}(M, N)$ for $s=1,2, \ldots$, if $r \geqslant s$ $+\operatorname{dim} M$ and $\operatorname{dim} N>0$.

[^0]Theorem 2.1 readily follows from the next two propositions involving the sets $E_{r}^{s}(M, N)=\left\{f \mid f \in C^{s}(M, N)\right.$, such that for all C^{r}-paths β in M, with a nonempty, connected, open subset of R as domain, $f \beta \in C^{s}$ implies β is constant $\}$ since $E_{r_{1}}^{s} \subset E_{r}^{s}$ if $r>r_{1}$.
2.3 Proposition. For $r>s, \overline{D_{r}^{s}(M, N)}=C^{s}(M, N)$ if $E_{r}^{s}\left(R^{m}, R^{n}\right) \neq \varnothing \neq$ $E_{r}^{s}\left(R^{m-1}, R\right)$, where $m=\operatorname{dim} M>0$ and $n=\operatorname{dim} N>0$.
2.4 Proposition. $E_{r}^{s}\left(R^{m}, R^{n}\right) \neq \varnothing$ if $r=s+1+L(m / n)$ and $n>0$.

To show 2.3 some preliminary results are necessary. Define a subset K of M to be an r-set if any C^{r}-path in K is constant.
2.5 Lemma. (a) If $\left\{K_{i}\right\}$ is a locally finite family of closed r-sets in M then $\cup_{i} K_{i}$ is also a closed r-set. (b) If K is a closed r-set in M and $f \in C^{s}(M, N)$ restricts to a map in $E_{r}^{s}(M-K, N)$ then $f \in E_{r}^{s}(M, N)$. (c) If $r>s, E_{r}^{s}\left(R^{m}, R\right) \neq \varnothing$, and x is a point in an open subset U of R^{m+1}, then there is an open set $V, x \in V \subset \bar{V} \subset U$, such that $\delta V=\bar{V}-V$ is an r-set. (d) If $r>s, f \in C^{s+1}\left(M, R^{n}\right), g \in$ $C^{\infty}(M,[0,1])$, and $h \in E_{r}^{s}\left(M, R^{n}\right)$ then $(f+g h) \in E_{r}^{s}\left(g^{-1}(0,1], R^{n}\right)$.

Proof. (a) Since $\left\{K_{i}\right\}$ is locally finite, it suffices to prove the result for two closed r-sets K_{1}, K_{2}. For $\left(\beta: U \rightarrow K=K_{1} \cup K_{2}\right) \in C^{r}$, let $U_{1}=\beta^{-1}\left(\left(K-K_{1}\right) \cup\right.$ $\left(K-K_{2}\right)$) and $U_{2}=$ interior $\left(U-U_{1}\right)$. Since $\left(K-K_{1}\right) \subset K_{2},\left(K-K_{2}\right) \subset K_{1},(K$ $\left.-K_{1}\right) \cap\left(K-K_{2}\right)=\varnothing$, and $\beta\left(U_{2}\right) \subset K_{1} \cap K_{2} \subset K_{1}$ the assumptions imply that the continuous map β is locally constant on the dense subset $U_{1} \cup U_{2}$ of the connected set U, i.e., β is constant. (b) For $(\beta: U \rightarrow M) \in C^{r}$, let $U_{1}=\beta^{-1}(M-$ K), $U_{2}=\operatorname{interior}\left(U-U_{1}\right)$ and proceed as in (a), noting that $f \beta \in C^{s+1}$ implies β is locally constant on U_{1}. (c) If $E_{r}^{s}\left(R^{m}, R\right) \neq \varnothing$ then clearly there is a $g \in$ $E_{r}^{s}\left(R^{m},(0,1)\right)$. Further, if $t \in R-\{0\}$, then the image $K_{i}(t)$ of the map t_{i} : $R^{m} \rightarrow R^{m+1}$ given by

$$
\begin{aligned}
t_{i}\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}, \ldots, x_{i-1}, \operatorname{tg}\left(x_{1}, \ldots, x_{n}\right),\right. & \left.x_{i}, \ldots, x_{m}\right) \\
& i=1,2, \ldots, m+1
\end{aligned}
$$

is a closed r-set in R^{m+1}. Indeed, if β is a C^{r}-path in $K_{i}(t)$ then $t_{i}\left(d_{i} \beta\right)=\beta \in C^{r}$ $\subset C^{s+1}$, where $d_{i}: R^{m+1} \rightarrow R^{m}$ is deletion of the i th coordinate. Since t_{i} is clearly in $E_{r}^{s}\left(R^{m}, R^{m+1}\right)$ and $d_{i} \beta \in C^{r}$, it follows that $d_{i} \beta$, and consequently β, is
 (a) and the component V of the origin in $R^{m+1} \rightarrow K$ is such that $\delta V \subset K$ and $V \subset(-\varepsilon, \varepsilon)^{m+1}$. This clearly implies (c). (d) If β is a C^{r}-path in $g^{-1}(0,1]$ with $(f+g h) \beta=\alpha \in C^{s+1}$, then $h \beta=(\alpha-f \beta) /(g \beta) \in C^{s+1}$ and thus β is constant. This shows 2.5.

For an open subset U of R^{m} and $f \in C^{s}\left(U, R^{n}\right)$ define $|f|: U-R$ by $|f|(x)=$ the maximum of the absolute value of all the partials of order $\leqslant 1$ at x of the n-component functions of f. Clearly $|f|$ is continuous and if $f=g$ on $K \subset U$ then $|f|=|g|$ on the interior of K.

Proof of 2.3. It suffices to show that $\frac{C^{s+1}(M, N)}{C^{s+1}(M) \overline{E_{r}^{s}(M, N)} \text { since } E_{r}^{s}(M, N)}$ $\subset D_{r}^{s}(M, N)$ and, by 4.2 of $[5], \overline{C^{s+1}(M, N)}=C^{s}(M, N)$. Given $f \in$ $C^{s+1}(M, N)$, it is possible, with the aid of $2.5(\mathrm{c})$, to find C^{∞}-coordinate systems $\left\{U_{i}, h_{i}\right\},\left\{W_{i}, k_{i}\right\}$ in M, N respectively together with an open cover $\left\{V_{i}\right\}$ of M for which $f\left(U_{i}\right) \subset W_{i}, \bar{V}_{i} \subset U_{i}, \bar{V}_{i}$ is compact, δV_{i} is an r-set and $\left\{\bar{V}_{i}\right\}$ is locally finite, $i \in I$. If, for a family $\delta_{*}=\left\{\delta_{i}>0\right\}$ of constants and a well ordering of the index set I, there is a family $p_{i} \in C^{s}(M, N)$ such that,
(1) $p_{i}=p_{j}$ on V_{j} for $j<i$,
(2) $p_{i}=f$ on $M-K_{i}$, where $K_{i}=\cup_{k \leqslant i} V_{k}$,
(3) $\left|\left(p_{i}\right)_{j}-(f)_{j}\right|<\delta_{j} / 2$ on $h_{j}\left(V_{i} \cap V_{j}\right)$ for $i \leqslant j$, where ()$_{j}=k_{j}() h_{j}^{-1}$,
then the unique C^{s}-map $p: M \rightarrow N$ with $p=p_{i}$ on V_{i} clearly satisfies $\left|(p)_{i}-(f)_{i}\right|$ $<\delta_{i}$ on $h_{i}\left(\bar{V}_{i}\right)$ by (3) ${ }_{i i}$. Therefore, by 3.6 of [5], p is in the δ_{*}-neighborhood of f. To show $f \in \overline{E_{r}^{s}(M, N)}$, then, it suffices to construct such a family for which $p \in$ $E_{r}^{s}(M, N)$. To this end assume that the family $\left\{p_{k}\right\}$ is given for all $k<i$ (take $p_{0}=f, K_{0}=\varnothing$) and define p_{i} as follows. By (1) and (2) there is a unique C^{s}-map $p_{i}^{\prime}: M \rightarrow N$ that coincides with p_{k} and f on V_{k} and on $M-K_{i}^{\prime}$ respectively, where $K_{i}^{\prime}=\cup_{k<i} V_{k} . \quad$ Let $q_{i}=\left(p_{i}^{\prime}\right)_{i}+\varepsilon \alpha_{i} g_{i}: \quad h_{i}\left(U_{i}\right) \rightarrow k_{i}\left(W_{i}\right)$, where $\alpha_{i} \in$ $C^{\infty}\left(h_{i}\left(U_{i}\right),[0,1]\right)$ is such that $\alpha_{i}^{-1}(0)=h_{i}\left(U_{i} \cap\left(M-\left(K_{i}-\bar{K}_{i}^{\prime}\right)\right)\right)$ (α_{i} exists by [2, p. 24]) and where $g_{i} \in E_{r}^{s}\left(h_{i}\left(U_{i}\right), R^{n}\right)$. Since $p_{i}^{\prime}=f$ on $\left(M-K_{i}^{\prime}\right) \supset\left(\left(K_{i}-\bar{K}_{i}^{\prime}\right)\right.$ $\left.\cap V_{j}\right)=K_{i j}$ it follows that $\theta_{i j}=\left(k_{i}^{-1} q_{i} h_{i}\right)_{j}-(f)_{j}=k_{j i}\left[(f)_{i}+\varepsilon \alpha_{i} g_{i}\right] h_{i j}-k_{i j}(f)_{i} h_{i j}$ $=\psi_{i j}$ on $h_{j}\left(K_{i j}\right)$, where ()$_{i j}=()_{i}()_{j}^{-1}$. Consequently $\left|\theta_{i j}\right|=\left|\psi_{i j}\right|$ on $h_{j}\left(\bar{K}_{i j}\right)$. Since all of the functions making up $\psi_{i j}$ together with all their partials of order $\leqslant 1$ are continuous and since $\bar{K}_{i j}$ is compact, it is clear, from the form of $\psi_{i j}$, that the constant $\varepsilon>0$ can be picked so that $\left|\psi_{i j}\right|<\delta_{j} / 2$ on $h_{j}\left(\bar{K}_{i j}\right)$. Further, since $\left\{V_{i}\right\}$ is locally finite, the set $J=\left\{j \mid i \leqslant j, K_{i j} \neq \varnothing\right\}$ is finite and so ε can be chosen so that (4) $)_{j}\left|\theta_{i j}\right|<\delta_{j} / 2$ on $h_{j}\left(K_{i j}\right)$ for all $j \in J$. Finally, take ε smaller, if necessary, in order that $q_{i}\left(h_{i}\left(V_{i}\right)\right)$, and thus $q_{i}\left(h_{i}\left(U_{i}\right)\right)$, is contained in $k_{i}\left(W_{i}\right)$. The map

$$
p_{i}= \begin{cases}p_{i}^{\prime} & \text { on } M-V_{i} \\ k_{i}^{-1} q_{i} h_{i} & \text { on } U_{i}\end{cases}
$$

is clearly in $C^{s}(M, N)$ and satisfies condition (1) since $p_{i}=p_{i}^{\prime}$ on $\left(M-\left(K_{i}-\bar{K}_{i}^{\prime}\right)\right)$ $\supset V_{k}$. Further, since $M-K_{i}=\left(M-V_{i}\right) \cap\left(M-K_{i}^{\prime}\right), p_{i}=p_{i}^{\prime}=f$ on $M-K_{i}$ and condition (2) holds. Since $h_{j}\left(V_{k} \cap V_{i} \cap V_{j}\right) \subset h_{j}\left(V_{k} \cap V_{i}\right) \cap h_{j}\left(V_{k} \cap V_{j}\right)$, conditions (1) and (3) $)_{k j}$ imply that $\left|\left(p_{i}\right)_{j}-(f)_{j}\right|<\delta_{j} / 2$ on $h_{j}\left(V_{k} \cap V_{i} \cap V_{j}\right)$ and thus also on $h_{j}\left(K_{i}^{\prime} \cap V_{i} \cap V_{j}\right)$. By definition, $\left(p_{i}\right)_{j}-(f)_{j}=\theta_{i j}$ on $K_{i j} \subset U_{i}$ and, by (4) $)_{j},\left|\left(p_{i}\right)_{j}-(f)_{j}\right|<\delta_{j} / 2$ on $h_{j}\left(K_{i j}\right)$. Since $\left(K_{i}^{\prime} \cap V_{i} \cap V_{j}\right) \cup\left(K_{i j}\right)$ is dense in $V_{i} \cap$ V_{j}, condition (3) ${ }_{i j}$ also holds. Finally, if we assume inductively that p_{k} restricts to a map in $E_{r}^{s}\left(V_{k}, N\right)$ for $k<i$, then the same is true for $k=i$. Indeed, since $p_{i}^{\prime}=f$ on $\left(M-K_{i}^{\prime}\right) \supset\left(K_{i}-\bar{K}_{i}^{\prime}\right)=h_{i}^{-1}\left(\alpha^{-1}(0,1]\right), 2.5(\mathrm{~d})$ implies that $q_{i} \in E_{r}^{s}\left(\alpha^{-1}(0,1]\right.$, $\left.k_{i}\left(W_{i}\right)\right)$ and consequently, since $p_{i}=k_{i}^{-1} q_{i} h_{i}$ on $U_{i} \supset\left(K_{i}-\bar{K}_{i}^{\prime}\right)$, that p_{i} restricts to a map in $E_{r}^{s}\left(K_{i}-\bar{K}_{i}^{\prime}, N\right)$. Since $p_{i}=p_{k}$ on V_{k}, p_{i} also restricts to a map in $E_{r}^{s}\left(K_{i}^{\prime} \cap V_{i}, N\right)$. Lemma 2.5(b) then implies that p_{i} restricts to a map in $E_{r}^{s}\left(V_{i}, N\right)$ since, by $2.5(\mathrm{a}),\left[V_{i}-\left(K_{i}^{\prime} \cap V_{i}\right) \cup\left(K-\bar{K}_{i}^{\prime}\right)\right] \subset\left(\cup_{k<i} \delta V_{k}\right) \cap V_{i}$ is an r-set. Since $p=p_{i}$ on $V_{i}, p \in E_{r}^{s}(M, N)$ and 2.3 is proved.

In the terminology of $\S 4$ of [4], the set of (r, s)-maps from R^{m} to R^{n} coincides with the set $E_{r}^{s}\left(R^{m}, R^{n}\right)$. Proposition 4.3 of [4], showing the existence of (r, s)-maps if $r=s+1+L(m / n)$, then gives 2.4 and consequently 2.1.

Remark. The conditions in Theorem 2.1 subsume $r>s$. If $r \leqslant s$ the rank theorem [2, p. 273] readily implies that $D_{s}^{r}(M, N)=\varnothing$ if $\operatorname{dim} M>\operatorname{dim} N$. This follows since then for any C^{s}-map $f: M \rightarrow N$ there are C^{s}-coordinate patches centered at p and $f(p)$ respectively relative to which f has the form $f\left(x_{1}, \ldots, x_{m}\right)=$ $\left(x_{.}, \ldots, x_{k}, 0, \ldots, 0\right)$ where p is a point of M where the rank k of f is maximum and where $m=\operatorname{dim} M$. Since $k \leqslant \operatorname{dim} N<m$ the fiber $f^{-1}(f(p))$ contains the C^{s}-path $\beta(t)=(0, \ldots, t)$. If further, $s>\operatorname{dim} M-\operatorname{dim} N>0$ then the C^{s}-version of Sard's theorem [6, p. 47] implies that "almost all" fibers of f support nontrivial C^{s}-paths.

References

1. R. D. Anderson, On collections of pseudo-arcs, Bull. Amer. Math. Soc. 56 (1950), 350.
2. J. Dieudonne, Foundations of modern analysis, Academic Press, New York, 1960.
3. W. Lewis and J. J. Walsh, A continuous decomposition of the plane into pseudo-arcs, Houston J. Math. 4 (1978), 209-222.
4. M. V. Mielke, Sectional representation of multitopological spaces relative to a family of smoothness categories, Illinois J. Math. 23 (1979), 58-70.
5. J. R. Munkres, Elementary differential topology, Ann. of Math. Studies, no. 54, Princeton, N. J., 1963.
6. S. Sternberg, Lectures on differential geometry, Prentice-Hall, Englewood Cliffs, N. J., 1964.
7. G. S. Ungar, Fiber spaces with totally path disconnected fiber, Ann. of Math. Studies, no. 60, Princeton, N. J., 1960, pp. 235-240.

Department of Mathematics, University of Miami, Coral Gables, Florida 33124

[^0]: Received by the editors March 28, 1979.
 AMS (MOS) subject classifications (1970). Primary 57D35; Secondary 54C10.
 Key words and phrases. Continuous decomposition, differentiable decomposition, totally C^{s}-path disconnected fiber.

